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Voltage distribution in random systems
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The problem of voltage and power distributions in random percolation systems is reviewed. Two-component
percolation and the exponentially wide spectrum of conductances are analyzed. It is shown that voltage
distribution in the two-component percolation has multipeak, multifractal structure. Distribution of powers e
dissipated inside the percolation-like system with exponentially wide spectrum of resistances, i.e., the system
in which bonds are occupied by conductances g ~ exp (— Ax) where . »> 1 and x is the random variable on

[0, 1] is determined by numerical simulations ind = 3 dimensions. It is shown that distributions n(Ine) obtained
for various values of system size L. and parameter ). collapse if displayed in coordinates o =In[e(L/F] vs
Inin(ine)\8}/InE+d, where ¢ is the percolation correlation length. The curve D(x) obtained by such a collapsing

plays the role of the spectrum of fractal dimensions in the system with exponentially wide spectrum of
conductances. © 1998 Elsevier Science Ltd. All rights reserved

1. Introduction

Transport properties of heterogeneous media have recently
attracted much interest. When the disorder of the medium is
extremely large percolation theory' is a very efficient tool of
investigation. The properties of electrical transport can be then
described by the distribution of voltage drops in the so-called
random resistor network (RRN). It turns out that various
moments of this distribution have physical interpretations.? For
example, the zero moment describes the mass of the percolating
backbone, the second one describes the network conductance
while the fourth is related to 1/f noise. It was shown that the
distribution n(In v?) of the logarithm of voltage drops v in RRN
has a multifractal structure.’ The term “multifractal” means that
there is an infinite set of exponents /(o) which describe the power-
law scaling, as a function of system size L, of different regions
o = Inv¥/In L of the distribution, i.e. n(lnv?)/In L ~ f(«).

2. Two-component percolation

RRN may be considered as the limiting case of the more general
two-component random resistor network (TCRRN) in which
both components of the mixture take finite values of the con-
ductance.* Namely, metallic conductance g,, occupies bonds of
d-dimensional lattice with probability p whereas “insulating”
conductance g, occupies bonds with probability 1—p. Such
TCRRN is a more realistic model of the metal-insulator com-
posite in which non zero conductivity of insulator is taken into
account. At the percolation threshold, i.e., for p = p, we have
found that if the network of size L is biased by unit voltage V' = 1
then the distribution of the logarithm of voltage drops, v that
appear on lattice bonds is composed of several peaks shifted

subsequently on —In (%) axis by amount of 2 In (AL"¥] where
h = g4/9.., ¢ is the crossover exponent and v is the percolation
correlation length exponent.” This can be seen in Fig. 1 where
the distribution of powers dissipated in TCRRN in which g,, = 1
and g, = h = 1077 is shown. For powers e dissipated in the net-
work we have e = g,,v* = v’ for metallic bonds and e = g* = h?
for insulating bonds. This means that part n, which describes
distribution of voltages dissipated in “insulating” bonds in power
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Figure 1. The distributions P(—In¢) of the logarithm of power dissipated
in three-dimensional TCRRN of size L =8 with g,=1 and
gs=h = 1077 (solid line). Points refer to powers dissipated in metallic
bonds ([J)—distribution n,(—Ine), and insulating bonds (A)—dis-
tribution #n—Ine+1n /). Solid line is the sum of the two. The arrow is
placed at —Ine = —Inh = 16. The length of horizontal double arrow-
headed line is 2 In[AL"*?] 2 20 if the value of 1/(vd) = 3.07 from Ref. [1]
is used.
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distribution is shifted by In/ towards lower powers and thus
does not overlap that part #, which describes distribution of
voltages/powers dissipated in metallic bonds. Like in the case of
RRN the peaks that form the distribution in Fig. 1 have multi-
fractal structure. This is seen for example in Fig. 2 where the data
obtained for various values of system size L are redrawn in
coordinates Inn,/In L vs @ = —In (v?)/In L. After such rescaling
they asymptotically take the shape of spectrum f(«). The shape
of power distribution in Fig. 1 can be understood better in terms
of qualitative analysis of transport processes which take place in
the TCRRN. The first peak in the distribution »,, is related to
currents flowing in the backbone of the percolating cluster. If
gs > 0 currents start flowing in the insulating phase. The first
peak in n, describes their distribution. This is however now the
only effect. The other is that dangling ends and isolated metallic
clusters, which in ideal (g, = 0) RRN carry no currents, now
carry currents that flow through the insulating phase. Thus they
are of order 4. This is the origin of the second peak in n,,: it
describes the distribution of voltage drops in dangling ends, iso-
lated clusters and all other metallic bonds which are “wetted” by
currents when insulating phase takes finite value, g, > 0. Similar
qualitative explanation of further peaks both in n, and n,, is also
possible.

3. Exponentially wide spectrum of conductances

Until now we have considered two-component percolation. There
is, however, also a very interesting case of continuous resistance
distributions. Let us consider the case

g: = g(x) = goexp (— 4ix) (D

where g; is the conductance of the i-th bond and x€[0,1] is a
random variable with a smooth distribution N (x). An example
which can be simplified to such problem is the high temperature
hopping conduction. Although the system with exponentially
wide spectrum of bond conductances defined by eqn (1) is not
the classical percolation because the components do not exist—
there is the well known approach® which allows one to reduce
this problem to the two-component percolation. In this approach
the network conductance G is described by the so-called critical
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Figure 2. Muttifractal spectrum of fractal dimensions obtained by resca-
ling power distributions (like those in Fig. 1) obtained for various values
of network size: L =8 (x), L=10(—), L=12(1), L = 15(+). Only
data which build up the first peak in P (and/or n,) in Fig. 1 were used.
The value v used on the horizontal axis is obtained as v* = e/g,, = e.
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conductance g.. The latter is defined as the smallest conductance
which close up the percolating cluster, namely g, = g,exp (— Ax,),
where

f’ ) N\'(x) dx = p('

0

is the fraction of bonds required to form a cluster which starts
spanning the network. In other words, the idea is to treat all the
bonds with g, > g, as “metallic phase” which form percolating
cluster whereas bonds with g; < g, as non conducting “insulating
phase”. A more detailed treatment leads one to the derivation of
the scale ¢ over which the system have well-defined size inde-
pendent conductivity. This scale is called correlation length and
it was shown that

S~ A

where v is the percolation correlation length exponent. Con-
ductivity is then

=8, ~ A exp(—ix,).
where
.y = V(d— 2).

For d =3 numerical simulations of Ty¢ and Halperin’ give
y=0.6+0.1, whereas our recent numerical estimate® is
y=10.76+0.09.

In order to determine voltage distribution in system with expo-
nentially wide spectrum of conductances we have performed com-
puter simulations of such system. In each computational step a
simple cubic lattice (d = 3) of linear size L, in which bonds were
occupied randomly in the way described by eqn (1) was generated.
A uniform distribution N (x) =1 was assumed for simplicity.
Once the lattice was generated, conductances g; of all its bonds
were stored in a band matrix of network equations and unit
external voltage V' = 1 was applied to the opposite walls of the
lattice. Free boundary conditions were applied in the remaining
two directions. Then the matrix was solved and voltages v; on all
bonds of the lattice were determined. Eventually, powers
e; = g,v} dissipated in the bonds were calculated and their popu-
lations were gathered into bins of the width of Alne = 0.77.
We have performed simulations for various values of parameter
A =40, 50, 60, 70 and for various values of the lattice size L = 8,
10, 11. For a pair of these parameters fixed, several thousands of
network realizations were generated and distributions n(ln e) were
averaged. Results are shown in Fig. 3. Let us recall that the
multipeak, multifractal structure of voltage distribution was
found for a TCRRN at the percolation threshold. In this case
the percolation correlation length is infinite and the system is
always in the fractal regime. In the present case of the system
with exponentially wide spectrum of conductances the correlation
length is always finite, £ ~ A'. This influences the shape of cal-
culated distribution of power. For example, in the limit 2 - o«
we have also £ — oo and for finite L we expect the distribution
gets the shape of multifractal type. On the contrary for finite &
and in the limit L — co the system becomes macroscopically
homogeneous and we expect that internal voltages form the dis-
tribution which is peaked at the value of voltage of V. = V¢/L
and scales with system size in Euclidean way. Namely,
n(lnv?) ~ (L/&). Such scaling is obvious when we partition the
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Figure 3. Power distributions in systems with exponentially wide spectrum
of conductances. Symbols refer to the results of numerical simulations
performed for various values of system size L and parameter A: L = 11,
A=50(D),L=11,A=70(x),L=8,A=50(+).

system of size L biased by a unit voltage ¥V = 1V into hypercubes
of size £. Each hypercube is then biased by voltage V.. The total
number, n(lne), of bonds in which the power e is dissipated is
then

4

where n.(Ine) is the number of bonds in which the power e is
dissipated inside the hypercube of size £. Let us now note that
the voltage V; which biases the hypercube of size £ appears on
the bond with critical conductance g.. In this bond the maximum
power of ey, ~ VZexp(—Ax,) is dissipated. Thus, if we want the
distributions obtained for various L and A collapse after a resca-
ling we must use the quantity o« = In [e(L/¢)?]/4 on the horizontal
axis. In this case the high-power part of the distributions should
approach the value of «,,,, = —x,. Let us further assume that,
like in the case of TCRRN, the number of bonds in which the
power e is dissipated contained within a hypercube of size £ scale
with its size in a power-law manner n(In e) = £°®, where D(a) is
the a-dependent fractal dimension. Consequently n(lne) scale
with L and & as

d
n(lne) = <I:> nglne),

d
n(lne) ~ (%) EP@ — [AgPe—d

and this means the proper quantity we should use on vertical axis
to rescale the data is In[n(Ine)/L7/In ¢ +d. In this case the dis-
tributions obtained for different L and 1 should collapse giving
the single curve D(x) which should be regarded as the spectrum
of fractal dimensions characterizing distribution of powers dis-
sipated in the system with exponentially wide spectrum of con-
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Figure 4. Spectrum D(«) of fractal dimensions that characterize power
distribution in the systems with exponentially wide spectrum of con-
ductances. Symbols refer to the systems of various values of size L and
parameter A: L=8, A=50 (), L=11, 2=70 (x), L=11, =50
(A), L=11, 1 =40 (+)and L = 10, 2 = 40 (*). In the rescaling of the
data on the axes the value v = 0.76 from Ref. [8] was used.

ductances. Figure 4 confirm our analysis. We may observe
collapsing of the distributions obtained for various L and A. As
we expect they approach the value of a,,, = —0.25 in excellent
agreement with the value of percolation threshold in simple cubic
lattice, x, = 0.25.

4. Summary

The problem of voltage and power distributions in random per-
colation systems is reviewed. Distribution of internal powers
dissipated in the percolation-like system with exponentially wide
spectrum of conductances was determined by numerical simu-
lations in d =3 dimensions. It was shown that distributions
obtained for various values of system size L and parameter 4
collapse if displayed in coordinates o= In[e(L/E)] vs
In{n(ine)/L7/In é+d. The curve D(x) obtained by such a col-
lapsing plays the role of the spectrum of fractal dimensions in
the system with exponentially wide spectrum of conductances.
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