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Topological and electrical transport properties of three-component random resistor networks
(RRN’s) i.e., RRN’s that contain three types of conductance g =0, g =h, << 1, and g =1, are inves-
tigated. Such networks confirm the universality hypothesis but show a much faster increase of con-
ductivity above, rather than inside, the critical region. This originates from the quasibicritical to-
pology of a percolating cluster. Besides the classical percolation threshold in which the conducting
infinite cluster is cut, there is also a metallic percolation threshold in which the metallic infinite sub-
cluster (i.e., formed only from g =1 bonds) first appears. Another implication of the quasibicritical
nature of the investigated RRN is the local peak in the S-versus-p relation, where S denotes the rela-
tive power spectrum of the 1/f noise and p is the concentration of occupied sites. The basic results
obtained with the help of the node-link-blob picture of a percolation cluster were also confirmed by
Monte Carlo small-cell real-space renormalization-group computations. The possibility and condi-
tions of utilizing of three-component RRN’s in the modeling of real metal-insulator composites are
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also discussed.

1. INTRODUCTION
The experimental relation
o~(p—p.), (1)

where o is the conductivity of a metal-insulator compos-
ite, p the fraction of the metallic component, p, its criti-
cal value, and t the conductivity exponent, can be ex-
plained by percolation theory.’? In this approach,
structural inhomogeneities of a real composite are
modeled by a random resistor network (RRN), i.e., a lat-
tice in which the bonds are either removed (with proba-
bility 1 —p) or occupied (with probability p) by the resis-
tors of the same conductance g (e.g., g =1). For such a
binary model the percolation theory predicts only one
universal value of the exponent r=¢2 (Ref. 1) for all
three-dimensional (3D) lattices. However, this universal
value of ¢ has been observed only in a few 3D real com-
posites. In practice, much larger values of ¢ (up to 7) are
measured.® To explain this, more complicated RRN’s
with a continuous distribution of bond conductance have
been proposed. It was shown* that if conductances of all
the occupied bonds are distributed according to the
singular power law P(g)~g~ %a>0) for g—0, then the
resulting value of the exponent ¢ becomes greater than its
universal value. Arguments that the distribution of inter-
particle conductance with the low-conductance part (i.e.,
for g—0) described by a singular power law can take
place in real percolatin§ systems were also supplied.”>®

In a previous paper’ we have followed suggestions of
Carcia, Suna, and Childers® and presented simpler argu-
ments leading also to an explanation of the large experi-
mental values of the exponent t. We pointed out that
values of ¢ observed for the real composites are always de-
rived from an approximation procedure in which experi-
mental data are fitted with relation (1). The approxima-
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tion is usually done over a broad range of the concentra-
tion p, not necessarily restricted to the critical region.3 ™13
It results in a noncritical value of ¢ that is affected not
only by the low-conductance part of the interparticle
conductance distribution, but also by the high-
conductance one. To investigate how this high-
conductance part of the bond-conductance distribution
influences the value of ¢ or, more generally, the o-versus-
p relation, we have performed7 Monte Carlo (MC) calcu-
lations on RRN’s in which bonds not removed were oc-
cupied by conductances according to a bond-conductance
distribution containing the low- and high-conductance
parts. For simplicity we have assumed single-8-function
representations for both of these parts. By taking into ac-
count the third & function located at g =0 and associated
with removed bonds, it is clear that we have analyzed the
RRN with a three-point bond-conductance distribution.
Such a network confirms the universality hypothesis, and
t==2 is observed in the critical region, i.e., for p—p.. It
is because in this region the lattice conductance is dom-
inated by the low-conductance bonds. In our case these
bonds take g =h, <<1. We have shown, however, that
high-conductance bonds, characterized by g =1, though
not relevant for the critical behavior, strongly reduce the
width of the critical region. These bonds also cause a
much steeper increase of the lattice conductivity above
this region. The last two effects are, of course, of margin-
al theoretical interest. However, they result in ¢ greater
than 2, if it is extracted from fitting the lattice conduc-
tivity to the rule (1) in too wide a range of the concentra-
tion p. As we have mentioned above it is often done in
the case of the real-composite data. The fact that the un-
known value of the percolation threshold p. is also ex-
tracted from the fitting procedure causes smoothing of
the data and makes difficult a correct evaluation of the
critical region and of the exponent #.7%13
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It should be noted here that the above considerations
can be easily generalized to more complicated RRN’s:
For example, for a RRN in which the low-conductance §
function 8(g —h,) is replaced by a singular power-law
distribution.

There is a simple physical interpretation of our net-
work. Two kinds of occupied bond may be associated
with two distinct microscopic conduction mechanisms,
observed between conductive grains. The two mecha-
nisms can be metallic conduction for the sintered or
touching grains and thermally activated tunneling for the
nontouching ones'* 1 (or alternatively, enhanced interfa-
cial ionic conduction and pure ionic conduction'®). Now
taking into account that the temperature influences. the
conductivity of different physical conduction mechanisms
in different ways, a three-component RRN also becomes
an useful tool for the explanation of more complex tem-
perature dependencies showed by real metal-insulator
composites with the help of percolation arguments. 17,18
It could be a way to identify composities for which the
three-component RRN works well.

The purpose of this paper is to give a qualitative pic-
ture of the transport mechanisms in three-component
RRN’s and to investigate their 1/f-noise properties. We
believe that this network could be utilized in modeling of
the experimental 1/f-noise data especially of those com-
posites to which such RRN’s have previously been ap-
plied.!s™ 18

II. 1/f NOISE OF PERCOLATING NETWORKS

In 1985 Rammal, Tannous, and Tremblay'® gave a
description of 1/f noise in RRN’s. For a network with
the binary distribution of bond conductance, they as-
sumed that conductance g, of any occupied bond « takes
g.,=g +8g,. Fluctuations 8g, were spatially uncorrelat-
ed, {8g,8g5) =0 for a+p, and their relative power spec-
tra (the relative noise) were identical in all the occupied
bonds, {(8g,)?)/g%=s,=s for each occupied bond a.
The fluctuations of bond conductance result in fluctua-
tions 8G of lattice conductance G. The RRN relative
noise independent of the lattice size S =L3((8G)*) /G?,
where L denotes the lattice size, have been shown to
diverge at the percolation threshold'**

S~s(p—p)™", (2)

where the noise critical exponent x=1.5 for three-
dimensional (3D) lattices.?! More unexpected results
have been observed for 1/ noise of a random resistor su-
perconductor network (RRSN), i.e., the noiseless super-
conductor matrix in which the noisy resistors g =1, s =1,
with concentration 1 —p, are embedded. For a RRSN the
relative noise S diverges when the percolation threshold
is approached from below, 212

S~s(p,—p)~*, 3)

despite the simultaneous increase of network conductivi-
25,26
ty,

a~glp,—p) %, %)
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The exponent g==0.75 (Ref. 27) and only wide bounds
0.38 <k’ <1.02 for the exponent x' (Ref. 21) have been
found for 3D lattices. Investigations of the 1/f noise of
the RRN’s with a power-law distribution of bond con-
ductance have also been carried out.”>?%* They led to
the relation (2), but with a value of k greater than its
universal value k=¢1.5.

III. UNIVERSALITY OF THREE-COMPONENT RRN

To study the 1/f noise properties of the three-
component RRN, we assume that all its bond conduc-
tances of the same type fluctuate with the same relative
noise. Without a loss of generality, we may assume that
conductances of the occupied bonds g =1 and g =h,,
fluctuate with relative noises s =1 and 5 =h,, respective-
ly. The fraction of the high-conductance bonds in all oc-
cupied bonds is given by a parameter b; (0<b;<1),
which can be called a ‘“‘sintering coefficient.” Properties
of the RRN defined above can be qualitatively described
with the help of the node-link-blob (NLB) picture of the
percolating backbone.! In this model the conducting
cluster is approximated by a superlattice with a lattice
spacing equal to the correlation length £. All the nodes
of this superlattice are connected by links, which in turn
are composed of multidimensional small clusters called
“blobs” and singly connected bonds (SCB’s). The average
number L; of SCB’s within a link scales with § as gy
(Ref. 30) where v=0.89 is the correlatlon length ex-
ponent defined by the relation £~(p —p.) In a
three-component RRN the concentrations of the bonds
(g,5)=(1,1) and (g,s)=(hg,h;) within the conducting
infinite cluster are b; and 1 —b |, respectively. This statis-
tic also holds for any topological subset of the occupied

bonds. Thus a set of SCB’s within a link contains on
average L,b; high-conductance bonds (g,s)=(1,1) and
L,(1—b,) bonds of the type (g,5)=(hy,h;). Of course,

variations (from a link to a link) around these averages
are observed. However, for L,(1—b;})>>1; ie., for
sufficiently long links, the probability of occurrence of a
link without low-conductance SCB’s is close to zero.
That means that almost all links contain SCB’s of the
(hg,hs) type. These SCB’s dominate link conductances
(smce hy <<1) and thus the conductivity of the whole lat-
tice. Hence the upper bound for the lattice conductivity
can be obtained as follows:

h; ( )

wid—2)+1 , (5)

where the condition g <<1, and the relations L;~&'"”
and £~(p —p,)”" have been utilized to obtain Eq. (5).
This relation leads us to the lower bound of the exponent
t, t > 1+v(d —2), the same as obtained for pure binary
RRN.3! Thus we conclude that our three-component
RRN confirms the universality hypothesis. Similiarly,
the relative noise S of the three-component RRN (with
hg <<1) can be also estimated:

S > (p _pc)~v(3d—:4)+2t-—l T (6)

hy
l_bl
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In Eq. (6) we have utilized the formula of Rammal, Tan-
nous, and Tremblay' to compute the link relative noise.
As we can see the lower bound for the noise exponent
K,k>v(3d —4)—2t +1, is again, the same as in the pure
binary case:*"?? the universality can be extended to the
1/f noise of a three-component RRN (see Fig. 2). As we
have mentioned, the relations (5) and (6) hold under the
assumption that L;(1—b,)>>1. It can be reached for
sufficiently long links (i.e., for p—p,), for which the
number L; of SCB’s is sufficiently large.

IV. OFF-THRESHOLD PROPERTIES
OF THE THREE-COMPONENT RRN

A larger p results in smaller &, thus in a smaller L. It
means that, with p increasing, the concentration p, of the
links without low-conductance SCB’s in the NLB super-
lattice also increases. The substantial increase of p,
occurs when L (1—b,) (the average number of low-
conductance SCB’s within a link) decreases below 1. In
this case the NLB superlattice is formed from links that
are either of high conductance with an average value of
conductance equal to 1/L, or of low conductance with
an average value of conductance equal to %, (they usually
contain only one low-conductance SCB). The high-
conductance links form separate clusters and if p continu-
ally increases, p, can reach its threshold value p ge> and
then these separate clusters become a highly conducting
infinite cluster connecting the opposite sides of the super-
lattice. At the scales much greater than £, the superlat-
tice can be approximated by the RRSN for p, <p,. and
by the RRN for p,>p,. (the highly conducting infinite
cluster built from the links of 1/L, conductance is not
the ideal superconducting infinite cluster). In the vicinity
of the percolation threshold p,,, conductivity and the rel-
ative noise are described by the power-law equations of
(pg—p¢g ), which can easily be transformed to

g~hy(p.—p) 94 (p), @)
S~hy(p.—p) *B(p), (8)
for p <p. and:
~1(p —p;)4,(p), )
S~1p—p.) ¥B,(p), (10)

for p >p/, where p/ is the concentration of conducting
bonds for which p, reaches its threshold value pg,
(=20.25). In Egs. (7)-(10) the functions A (p), B(p),
A(p), and B (p) take finite values at p =p_. Taking into
account the topological picture of three-component RRN
and its physical interpretation, the second percolation
threshold p. can be also called the metallic percolation
threshold because for p >p, the infinite metallic cluster
first appears. This region of p can thus be called a
metallic-conduction regime in contrast to a tunneling-
conduction regime given by p, <p <p/, where the low-
conductance (i.e., tunneling) bonds dominate the trans-
port properties of the lattice.

Relations (7) and (9) describe the dependence of lattice

ANDRZEJ KOLEK AND ANDRZEJ KUSY 43

conductivity ¢ on the fraction p of the metallic com-
ponent above the critical region. They both show a faster
increase of ¢ when p increases above, rather than within
the critical region, where conductivity is described by Eq.
(5). The whole dependence [described by Egs. (5), (7), and
(9)] coincides with the MC results presented in Fig. 1. As
we have mentioned above, this leads to the relatively
large value of the exponent ¢ when it is extracted from
the data lying in a broad range of p. The NLB picture
also helps us to explain how the high-conductance part of
the bond-conductance distribution influences the width of
the critical regime: The greater the fraction b,, the
greater p, (for fixed p) and the smaller value of p =p, is
necessary to reach p,=pg [(p/—p.)~(1—b;)/(1
—Pe.)]. Thus the critical region is reduced if the concen-
tration b, of the high-conductance bonds in the whole
population of the conducting bonds increases. This again
agrees well with the results of the numerical simulations
of the three-component RRN (Ref. 7) (see also Fig. 1).
Now consider the 1/f noise of a three-component
RRN. The S-versus-p dependence is described by Eq. {(6)
in the critical regime and by Egs. (8) and (10) above this
region. Equations (6) and (10) show a decrease in S as p

b log,, (Pt~ pc) 1

1t s 1 raf
-2 -1
log,,(p-pc)

R B W ]

FIG. 1. Conductivity o vs p —p. of the three-component
RRN (p is the fraction of the sites present, p, is the percolation
threshold), obtained by the MC small-cell RSRG. The lower
solid line refers to the classical binary RRN in which all the oc-
cupied bonds take low-conductance g =h,=0.001. The two
upper lines refer to the case when the fraction b; =0.5 (middle
solid line) or 0.8 (upper solid line) of low-conductance bonds are
replaced by the high-conductance ones (i.e., with g =1). For
p—p. all the solid lines indicate the same slope ¢ =2.1610.05,
which is very close to the universal value t=~2. The broken
lines drawn for p —p, arise from shifting the lowest solid line by
—logo(1—0,) [see Eq. (5)]. The arrow indicates the location of
the metallic percolation threshold p; for RRN with b,=0.5.
For this RRN Eqs. (7) and (9) are placed into the plot as the
dotted lines. In the inset the cell utilized in the RSRG compu-
tations is shown.
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FIG. 2. Relative noise S vs p —p, of the three-component
RRN obtained using RSRG method (see text). The lower solid
line refers to the classical binary RRN in which all the occupied
bonds take the conductance g=h, and the relative noise
s =h,=1. The upper solid lines refer to the situations in which
the equal fractions b;=0.5 and 1—b,=0.5 of occupied bonds
take the high-conductance g =1 with the relative noise s =1
and the low-conductance g =h, with the relative noise s =h,;
line 4, h,=100, h, =0.0001; line B, h;=1, h, =0.0001; line C,
hy=1, h;=0.001. All the lines show the same slope
—k==—1.8710.05 as p approaches p., which is our RSRG esfi-
mate of the universal value of k=1.5. The broken lines drawn
for p—sp. arise from shifting the lowest solid line by
logiplh, 7/(1—5,)] [see BEq. (6)]. The dotted lines refer to the
theoretical NLB predictions given by Eqgs. (8) and (10).

increases. Equation (8), however, predicts increasing S as
p increases (see Fig. 2). This indicates that the local max-
imum on S versus p at the second percolation threshold
pe could be observed. However, this maximum can only
occur for the relatively small values of #,. A large value
of h, shifts the critical-region part of S versus p [Eq. (6)]
upwards, which masks the maximum. In this case Eq. (8)
manifests itself by decreasing of the magnitude of the
S (p) slope as p approaches p. from below (see Fig. 2, line
A). This results in much steeper decrease in S after p
exceeds the percolation threshold p;. This feature basi-
cally differs the S-versus-p dependence from the o-
versus-p one. In the latter case the transition between the
tunneling and the metallic regions is smooth because of
the same type of the monotonicity of Egs. (5), (7), and (9).
So, if we look at the noise data of a three-component
RRN, the separation between the tunneling- and
metallic-conduction regimes is more readily made than if
we look at the conductivity data. One should keep this
conclusion in mind when analyzing the 1/f-noise mea-
surements of real metal-insulator composites.

V. IS ALOCAL MAXIMUM
ON THE S-VERSUS-p RELATION POSSIBLE?

In the previous chapter the local maximum on the S-
versus-p dependence for a three-component RRN has
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been theoretically predicted. This maximum occurs at
p =p, if the magnitude of the relative noise S originated
from the critical behavior described by Eq. (6) is smaller
than the magnitude of the relative noise originated from
the off-threshold behavior. The latter one is described by
Egs. (8) and (10) in the vicinity of p/, while exactly at p, it
is approximated by*?

S~Clhg—K/(q+t)+DhShg—K'/(q +1) , (1

where C and D are constants. The smaller 4, for fixed A,
results in the greater relative noise given by Eq. (11) and
does not influence S given by Eq. (6). This leads to the
peak on S(p) (see Fig. 2, lines B and C). On the other
hand, increase of &, with h, held constant results in two
noise enhancements given by Eqs. (6) and (11). However,
the first enhancement is greater than the second one. In
this situation the maximum on S(p) will be masked (see
Fig. 2, lines 4 and C). To verify our topological NLB
analysis and to identify the 4, and &, values for which
the nonmonotonic behavior of S versus p is observed, we
have performed the numerical simulations of three-
component RRN. To estimate lattice conductivity o and
relative noise S, we have utilized the MC small-cell real-
space renormalization-group (RSRG) method.’3¥3* We
have chosen the 3D cell of size b =2 shown in the inset of
Fig. 1. To enhance the accuracy at the calculations, we
have introduced two improvements. First, to rescale the
probability p, we have applied a two-parameter transfor-
mation, which is simply a 3D version of the Nakanishi-
Reynolds® two-parameter 2D transformation. Second,
we have rescaled the whole joint distribution of lattice
conductivity and the relative noise P(0,S) [the untrun-
cated transformation of P(0,S)], not only its average
values.’>3* The results are shown in Figs. 1 and 2. On
this basis we can reproduce all the properties of the
three-component RRN which we have previously ex-
tracted from our NLB analysis.

The three-component RRN proposed as a model of a
class of the metal-insulator composites is a simple ideali-
zation of the current-carrying physical network formed
in a real composite. In real structures, distributions of
grain sizes, constriction diameters, tunneling distances,
and areas, etc., all result in distributions of conductance
and relative noise of the sintered and nonsintered con-
ducting grains. These distributions are not simple § func-
tions. It seems, however, that they cluster around some
average values (gc,s¢) and (gp,sp), where g¢ and gp
differ by several orders of magnitude. It is also possible
that the distribution of the tunneling conductance is
singular at g =0.% As already mentioned, all these
effects, if taken into account in our RRN model, do not
fundamentally change the o-versus-p and S-versus-p
dependencies described in the previous sections. Howev-
er, they make even a rough estimation of the values of g,
&g, and, therefore, of h, =gp /g very difficult, especially
if this estimation depends on the parameters of the mi-
croscopic conduction model. Instead, a macroscopically
based indirect identification of the parameter 4, is possi-
ble. Namely, one can compare variations of the conduc-
tivities of the real composite and those of the three-point
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RRN with different values of parameter 4, in respective
ranges of concentration p. For example, looking at the
data in Ref. 13, we find for the RuO,-based thick-film
cermeéts a factor of about 4 X 10® in variation of the con-
ductivity when the metallic filling fraction passes from
0.02 to 0.3. In the respective range of the concentration p
conductivity of three-component RRN varies by about 6
orders of magnitude for h,=0.001 (see Fig. 1) or by
about 7 orders of magnitude for 4, =0.0001. Thus we
identify for this composite 0.0001 </, <0.001. It should
be noted here that the calculations of the conductivity of
the model sintered and nonsintered contacts ‘done by
Vest® for the RuO,-based thick-film cermets led him to
the value 4, ~0.001, which agrees well with our estimate.
Because of our special interest in RuO,-based thick-film
cermets,> 71117183739 we have performed our numerical
calculations for £, =0.001 and 0.0001 (see Figs. 1 and 2).

To answer the question ““is the local maximum on the §
versus p characteristic of any real composite possible?,”
an estimation of acceptable values of 4 is still needed. It
is much more difficult than the 4, estimation. Micro-
scopic mechanisms generating the 1/f noise are still not
explained, and the calculations of the relative noise of the
model intergrain contacts are possible only to the qualita-
tive accuracy. For this reason, now we cannot answer
the question whether the 4, value of order of 1, for which
three-component RRN shows the local maximum on the
S-versus-p relation, is physically acceptable or not. At
this moment we would like to refer to some 1/f-noise
measurements in which nonmonotonic S-versus-p depen-
dencies were observed. In 1979 one of us observed™® such
a dependence for the bismuth ruthenate thick resistive
films; the identification procedure led us to the value
hg < 1. Inokuma, Taketa, and Haradome® reported data
for RuO, cermets indicating the nonmonotonic behavior
of the 1/f-noise versus conducting component concen-
tration. Recently Bobran'® has also measured the relative
noise of the RuO,-based thick resistive films. His mea-
surements show the local peak on the S-versus-p depen-
dence and we identify in this case 4, ~30. It seems, how-
ever, that the latter data do not always confirm the in-
verse proportionality of the measured relative noise to
the volume of the sample.

On the other hand, much larger values of %, have re-
cently been estimated.’**! Tremblay and Fourcade*' and
Morozovsky and Snarsky®? considered a binary RRN
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composed of the bonds of the type (1,1) and (h,,h;). As-
suming h; ~hy 1, they found*? a value of the noise critical
exponent, k=6.4. As an experimental confirmation of
this result, Morozovsky and Snarsky®? referred to the
measurements on the carbon-wax model composites for
which k=5%1 have been found.*> As we have mentioned
above, we now refrain from any arguments that could
distinguish between these two different estimations of pa-
rameter A;. It is possible that the values of &, which are
different for different composites, are not restricted to
within such narrow bounds.

VI. CONCLUSIONS

We have performed an analysis of the topology and the
electrical transport properties of three-component RRN.
Such a network has already been proposed as a model for
the metal-insulator composites”® 1837 in  which
tunneling- and metallic-conduction regimes can be
detected (e.g., via measurements of temperature
coefficient of resistance). We have explained in a qualita-
tive manner a basic feature of the three-component RRN,
which has been reported earlier.”® This feature is an evi-
dent increase of the conductivity exponent ¢ if it is ex-
tracted from data lying over a broad range of the metallic
concentration p. This increase is caused by the quasibi-
critical nature of the RRN under study. Furthermore,
we have described in terms of the NLB picture of the per-
colating cluster the dependence of the 1/ f-noise intensity
S on concentration p. Our NLB analysis indicates the
possibility of a nonmonotonic dependence of S on p. We
have found that a local peak on the .S-versus-p depen-
dence can occur if &, (the ratio of the relative noise of
poor and good intergrain contacts) is of order 1. We
have not found any convincing physical arguments which
can reject this value of A, as being physically unaccept-
able. Thus we conclude that the three-component RRN
could be useful in an explanation of the S-versus-p depen-
dences which show a nonmonotonic increase of S as p ap-
proaches the percolation threshold p,.
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