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Abstract

The quantum site-percolation problem defined by a tight-binding one-electron Hamiltonian
on regular simple cubic lattice with binary probability distribution of site energies P(zp) =
pd(en) + (1 — p)d(en — o0) is studied using the Landauer-Biittiker formalism and Green’s
function method. The dimensionless conductance g according to Landauer—Biittiker formula is
calculated for a finite system of size L x L x L. The arithmetic and geometric (e!™¢’) averages
of g over many realizations of the disordered system are calculated. Plotting ¢ for different L
as a function of concentration p has enabled to find a critical p = p, such that g decreases
(exponentially) with L for p < p, and it increases (linearly) with L when p > p,. Thus, we
have demonstrated the Anderson metal-insulator transition at critical concentration p, from the
behaviour of the conductance itself. We have also estimated the critical conductance, g. as
ge = g(pq). By estimating the critical point for different values of electron Fermi energy E
we have estimated the mobility-edge trajectory and it has been found to be consistent with the
corresponding line in the p—F plane obtained by Soukoulis et al. (1987; 1992).
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The estimation of conductance of disordered electron systems has attracted much
theoretical interest for more than three decades. Perhaps, most attention has been de-
voted to the Anderson model [1]. It uses the one-electron tight-binding Hamiltonian on
regular lattice with “diagonal” disorder

H=Y |n>e<n|+ Y |n>Um<m]|, (1)
n
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where Upm are hopping matrix elements which vanish unless n and m are nearest
neighbours, | n > represents a wave function on the site n and the site energies ¢
are assumed to be uniformly distributed over some width W being the measure of
the disorder degree. It has been shown both theoretically and by numerous computer
experiments that in three-dimensional (3D) systems there exists some critical value of
W, W,, above which all eigenstates of the Hamiltonian are localized in the sense that
the asymptotic decay is exponential with the distance [2,3].

Another interesting class of models involves substitutional (binary) disorder and they
are usually called quantum percolation models. They provide zero-order descriptions
for the electrical transport properties in binary metal alloys [4-6] and recently also in
metal-insulator nanocomposites [7—9]. For the site-percolation problem the distribution
P(zq) of site energies is binary and for an alloy 4,B,_, [4] it takes the form

P(en) = pd(en) + (1 — p)o(en — €), (2)

where atoms labeled 4 and B are situated on the sites of a regular lattice with con-
centrations p and (1 — p), respectively. From Eq. (2) it is seen that the energies of
sites 4 and B are ¢4 = 0 and £3 = &, respectively. When ¢ > 2zU, where z is the
number of nearest neighbours at any site of the lattice and Upy = U is a constant,
the spectrum of Eq. (1) splits into two subbands, centered approximately about the
energies 0 and ¢ [4]. A case of particular importance concerns “strong-scattering limit”
in which ¢ — o0. In this case the sites B are completely inaccessible for an electron
and can formally be removed from the problem.

The model of binary alloy, in which the sites of the lattice are occupied by atoms has
been extended by Sheng and Zhang [7] to different disordered electron systems, namely
to granular metal films, e.g. Au-Al,O; films, being metal-insulator nanocomposites. In
this case, sites of the lattice are occupied by nanometer-size metallic particles with
probability p and by an insulator with probability (1 — p). Because of the ultrasmall,
mezoscopic size of the metallic particles, typically 10nm, an electron is scattered during
its travel through the system and at temperatures low enough, such that its phase
coherence length Ly is greater than this mezoscopic size, the interference and resulting
localization phenomena are present also in this scale. Since the sites of the lattice
occupied by an insulator form perfect barriers, the distribution of site energies for
these systems corresponds to that given by Eq. (2) in the strong scattering limit,
i.e. with ¢ = oo. Sheng and Zhang [7] have presented numerical studies of such a
model for a two-dimensional (2D) system using the Landauer-Biittiker formula [10] to
calculate the dimensionless conductance g, showing that g ~ exp(—L/&j,.) where &ioc
the localization length of the electron wave function, has been found as an increasing
function of metal concentration p up to p = 0.95 with no sign of divergence.

We have extended the Sheng and Zhang model to a 3D system. We have demon-
strated the Anderson transition from the localized-states phase (g ~ exp(—L/&oc)) to
the extended-states phase (g ~ L) at two values of the critical metal concentration
p = py estimated for two different values of electron Fermi energy £ = 0.01 [8] and
E = 2.0 [9] (the values of E are expressed in the transfer energy U units).
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In this paper we present numerical results for the quantum site-percolation problem
with the distribution of site energies given by Eq. (2) in the strong scattering limit
(e = 00). Using the Landauer-Biittiker formula to estimate the conductance we have
calculated the mobility-edge trajectory, i.e. the line in the concentration-energy plane
below which a state at an arbitrary energy from the band is localized. Such data have
already been published by Soukoulis et al. [5,6], but they were based on the deter-
mination of the critical point from the scaling behaviour of the localization length
itself and used the well-known numerical approach called transfer matrix method [2].
As opposed to that, we first estimate conductance and from its scaling behaviour we
evaluate data for the mobility-edge trajectory. Therefore, our approach allows direct
determination of critical conductance g. = g(p,) vs electron Fermi energy. Further-
more, Soukoulis et al. [5,6] start from a slightly different distribution of site energies,
P(en) = pd(en — €4) + (1 — p)o(e, — p) with epg = —&,4. However, they present the
results for various values of ¢4 including ¢4 = 107 (in the energy U units) which can
be considered as the strong scattering limit as in our model.

Now we describe briefly the algorithm of our calculations (for more details refer
to Refs. [8,9]). We evaluate the dimensionless conductance using Landauer-Biittiker
formula [10]:

go G AT o) -
e/h S (L+ R — Toy Y

where Ly is the number of quantum channels in the leads, i.c., ideal-metal electrodes
attached to the sample, 7; and R; are calculated by summation of transmission and
reflection matrices over Ly, v; is the channel velocity and G is the sample conductance.
The transmission and reflection matrices have been calculated with the help of Green’s
function method [11]. At each value of the Fermi energy £ assumed in the studies,
the solutions k. of the dispersion relation

E/U = 2(cos k.a + cos k,a + cos k,a) 4)

have been found for discrete transverse wave vector values k, = 7n//(L + 2) and
k, = mm/(L +2) with [, m taking the values 1,2,..,L + 1, i.e., the hard-wall boundary
condition is assumed here. Lattice constant ¢ was taken to be equal to 10nm, i.e.,
typical size of metallic grains in granular metal films; in our numerical calculations
the length is calibrated in untis of a. Each solution & of Eq. (4) determines one
conducting channel with the Fermi velocity v; = CE/dk, evaluated at k, = k.. The
number of conducting channels L, used in the summations of Eq. (3) is the number
of solutions k! (or v;) just defined.

We have performed numerical calculations of the dimensionsless condutance g for
the above described quantum site-percolation problem on a simple cubic lattice in
which concentration p and electron Fermi energy E were varied in order to esti-
mate the data for the mobility-edge trajectory. We have considered only percolating
samples in the regime p > p. ~ 0.312, the classical percolation threshold for this
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Fig. 1. Dimensionless conductance g (Eq. (3)) of a 3D quantum site-percolation model vs. metal concen-
tration p for the electron Fermi energy £ = 0.5 (in the transfer energy U units). The g value has been
estimated as the geometric average (g) = e{9) over 5000 and 1000 configurations for L = 4 and 5,
respectively, and over 500 configurations for L = 6,7, 8.

lattice. The calculations made for different lattice sizes L have allowed to distinguish
between extended-states phase (g ~ L) and localized states phase (g ~ exp(—L/&ioc))
with localization length &, diverging at critical point p,. The conductance (Eq. (3))
has been calculated as both geometric average, ¢" 9, and arithmetic average over
5000, 1000, 500,500 and 500 configurations for L = 4,5,6,7 and 8 respectively. In
general, geometric average has been used to estimate the dimensionless conductance in
the localized regime, where the self-averaging quantity is In g. On the other hand, the
arithmetic average has been used in the extended-states regime, where dimensionless
conductance itself appears as the self-averaging quantity.

The transition point for each value of the Fermi energy has been estimated on the
basis of two steps. In the first step, g has been plotted vs. metal concentration p for
different lattice sizes L. In Fig. 1 we have shown, as an example, g vs. p relations
obtained for the Fermi energy £ = 0.5. From this set of data the critical concentration
p, and the corresponding critical conductance g. can be defined in such a way that
in the range where p < p, (or equivalently g < g.) the conductance decreases while
when p > p, (or g > g.) it increases with the lattice size L. We have verified the
exponential conductance decay and linear conductance increase with L for p < p,
and p > p,, respectively. From Fig. 1 we can see that p; ~ 045 and g, ~ 2.2
in the units of €?/h (see Eq. (3)) or g. =~ 0.35 in the units of ¢?/A. In the second
step we have estimated the critical values of p, (and g.) more carefully. In the range
where p < p, the straight-line relationship of the form In g =In g, — L/&,c has been
verified close to the critical point increasing p from p = 0.40 with the step 0.01. The
magnitude of the straight-line slope has been observed as continuously decreasing to
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Fig. 2. Mobility-edge trajectory in the concentration—energy plane for the quantum site-percolation problem
on the simple cubic lattice with the site energies distributed according to Eq. (2) in the strong scattering
limit, i.e., with ¢ = co. The points are the results of the numerical calculations described in this work and
the line is the trajectory found by Soukoulis et al. [5,6] for a similar binary system (see text) with £ = 107.

zero as p approached p, from below; thus £loc — oo with p — p, has been noticed.
This divergence of e at py (gc) is described by the fromula

—y

g —4c
9e

P {P_Pq , (5)

Ex
Pq

“|

where ¢ = )¢ for p < p, and for p > p,, it is such a characteristic length that for
L > & Ohmic behaviour g(L) o< 1?2 (d being the dimensionality of the system) is
observed. To evaluate p, more exactly we have fitted the data & vs. p to Eq. (5).
By this approach we have found p, = 0.45 & 0.01. Next, using this value of p, the
data have been fitted to the straight-line equation and from its slope v = 1.2 + 0.2 has
been found. The obtained value of v can be compared with v = 1.5+ 0.1 found by
Kramer and MacKinnon [2]. We consider our estimation of the critical exponent as
a rather rough one and give these data here only as resulting together with p, from
fitting the data to Eq. (5).

Using the method described above we have estimated the critical concentration for
the following values of the electron Fermi energy £ = 0.01, 0.1,0.5,1.0, 1.5,2.5,
3.0,3.5, 4.0,4.5 and 5.0. They are shown as points in Fig. 2 together with the line being
the mobility-edge trajectory found by Soukoulis et al. [5,6]. Because of the relatively
small number Ly of quantum channels estimated for £ > 5.0, and from this resulting
limitation of linear lattice size to the two or three largest L values, we have not been
able to estimate the mobility-edge in this range of E with satisfactory accuracy. From
Fig. 2 it is seen that the results obtained here are in good agreement with the data
found by Soukoulis et al. [5,6]. The value of percolation threshold p, below which all
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cingenstates are localized that can be estimated from our data is p; = 0.44 +0.01 and
it corresponds to the energy £ = 2.0. Soukoulis et al. obtained the same value of p,,
but for energy £ = 0.5 and for this energy our calculation gives p, = 0.45+0.01. The
values of critical conductance g. estimated in our studies as g(p,) depend strongly
on the electron energy E. Namely, the critical conductance expressed in /% units
decreases from g, ~ 1 for £ = 0.01 down to g. ~ 0.003 for £ = 5.0. This more than
two orders of magnitude variation of g. can be compared with the range 0.02-10.0 as
given by Kaveh and Mott [12]. However we do not know of any publication dealing
with the dependence of the critical conductance on the Fermi energy.

This work was supported by the State Committee of Scientific Research (KBN),
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in the Computer Center of Rzeszow University of Technology.
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