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The conductance in the quantum site-percolation on simple cubic lattice is numerically studied using
Landauer-Biittiker formalism. Binary distribution of site energies P(e,) =pd(e,)+(1—p)d(e,— o) is assumed with
p{71—p) being concentration of metallic (insulating) sites. The metal-insulator transition is defined as such
point p, for which dimensionless conductance g changes its dependence on linear size L of the system from
g o« exp (—L/,,.) forp < p, tog o L forp > p,. The critical conductance at the metal-insulator transition is
estimated as g. = g(p,). It is found that g, expressed in e*/ units decreases from 1 at the center of each
subband (EAJ =0) down to 0.002 in the vicinity of the subband edge (E/U =6). This, almost three orders of
magnitude, variation of the critical conductance vs electron Fermi energy E can be compared with the range
0.02-10.0 obtained for g. by Kaveh and Mott.? They have concluded that critical conductance is not universal.
QOur data support this conclusion. © 1998 Elsevier Science Ltd. All rights reserved

1. Introduction

Abrahams et al' have developed a scaling theory for the zero-
temperature dc dimensionless conductance, g = G/(¢*/h), of dis-
ordered electronic systems ; where G is conductance (in Q") of
disordered sample in the shape of the cube with side L, e is
elementary charge and # Planck’s constant. According to this
theory in three dimensions there exists a critical conductance g,
that separates the extended states (metallic) phase g > g, from
the localized states (insulating) phase. In the metallic phase con-
ductance tends to increase linearly with the size L of the system.
On the other hand, in the insulating phase, g exponentially
decreases with L, g oc exp(—L/¢,,), where &, is localisation
length of the electronic wave function. According to the scaling
theory the critical conductance, g, is independent of the material.'
Estimation of g, has been a subject of several theoretical and
experimental elaborations (for a review see e.g. Ref. 2). Unfor-
tunately the results obtained by different authors are not consist-
ent. It is often suggested that g, expressed in €%/ units is of
the order of unity.! Using a model of random scatterers for
localisation problem, and a renormalisation group technique,
Shapiro® has found g. = n/3.92 that is in fact close to unity.
More recently Lambrianides and Shore* have utilized Kubo—
Greenwood formula to numerically evaluate the conductance for
Anderson model of three-dimensional noninteracting electrons
in a uniformly distributed random potential. They found
g. = 0.14+0.01. According to the calculation of Kaveh and Mott?

* To whom correspondence should be addressed.

localisation effects alone lead to g. = b/37n” with 1 < b < 3, which
gives 0.03 < g. < 0.1. This is consistent with the value g, of the
order of n~? as given by Lee and Ramakrishnan.® However
Kaveh and Mott? discussion of both theoretical and experimental
data gives a broad range 0.02-10 for g..

In this paper we present a numerical estimation of the critical
conductance g, in the site-percolation on a simple cubic lattice.
We use Landauer—Biittiker formalism following the approach
given in our recent paper.® We show that g, strongly depends on
the electron Fermi energy in the system.

2. Model

Let us consider one-electron tight-binding Hamiltonian with
diagonal disorder defined on simple cubic lattice of sites

H =) Indendnl+ 3 In) Uyl 0y
n n

where U, ,, = U are hopping matrix elements which vanish unless
n and m are nearest neighbours, |n) represents a wave function on
the site n and the site energies ¢, are binary distributed following

P(e,) = pd(en) + (1 — p)d(en— o). @)

p(1—p) is concentration of metallic (insulating) sites.

We evaluate the dimensionless conductance of our model using
Landauer-Biittiker formalism.” To perform the calculations we
attach metallic (p = 1), semiinfinite electrodes to the opposite
walls of the lattice. One way to estimate the conductance of the
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disordered system is to use the multichannel Landauer-Biittiker
formula®’ that corresponds to four-point (four-probe) method
of measurements

Gy _2 CZI T"> (:Z, vr')

e’lh

g4~—pE P Ly (3)
2 (+R—=T) !

i=1

where L, is the number of quantum channels in the leads, 7; and
R, are calculated by summation of transmission and reflection
matrices over L,, v; is velocity in the channel / and G,_, is the
sample conductance. The transmission and reflection matrices
have been calculated with the help of Green’s function method
(see Ref. 6 and references therein). Conductance of the disordered
system can also be calculated using another Landauer—Biittiker
formula’

G, 1&
= = — T.
gZ—p ez/h ni:zl i (4)

which corresponds to two-point electrical measuring. It gives
roughly the same results as formula (3) for strongly disordered
systems. However for weakly disordered samples the contact
resistance has to be subtracted from g5, as follows

g1 =(9:,—nLs") " (5)

3. Results and discussion

We have performed numerical calculations of the dimensionless
conductance for the model described in Section 2 using eqns (3)-
(5). First, quantitative agreement between data obtained using
eqns (3)~(5) have been tested (see Fig. 1). For weakly disordered
samples, g > 1, the agreement can be observed only between eqn
(3) and eqn (5) while in the strong disorder range, g < 1, all three
formulas give approximately the same results. On this basis in
the following we have used eqn (3) to calculate dimensionless
conductance g = g4_.
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Figure 1. Dimensionless conductance of 3-D quantum site-percolation
model calculated by eqns (3), (4) and (5) vs concentration p of the metallic
sites. Calculation have been made for the lattice size L = 6 and Fermi
energy E/U = 0.001. For strong disorder (g < 1) the results obtained by
different formulas coincide.
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Concentration p, Fermi energy E/U and sample size L have
been varied to estimate mobility-edge trajectory. Only per-
colating samples in the regime p > p, = 0.312 were taken into
account. The extended states phase (g oc L) and localized states
phase (g oc exp(—L/&,:)) have been identified from g vs L
behavior with the localization length &, diverging at critical

point g. = g(p,)

—v "
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Pq
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where & = &, forg < g, while for g > g, £ is such a characteristic
length that for L > £ ohmic behavior g(L) oc L is observed.

The conductance [eqn (3)] has been averaged over 2000-10,000
configurations for L from 11 down to 3, respectively. In general
geometric average, e"?’, and arithmetic average have been used
in the insulating and metallic regime, respectively. The localization-
delocalization point has been estimated on the basis of two steps
for each value of the Fermi energy. First g has been plotted vs
metal concentration p for different lattice sizes L (Fig. 2). From
these data critical concentration p, and corresponding critical g,
have been estimated noting that for p <p, (g9 <g.) the con-
ductance decreases exponentially while for p > p, (g >g.) it
increases roughly linearly with the lattice size L. From Fig. 2 one
finds p, = 0.6 and g, = 0.002. In the second step we have carefully
studied the straight-line equation Ing = Ing.—(L/&,.) changing
p from p = 0.56 to p close to the critical point with the step 0.005.
The magnitude of the slope of this straight line has been found
as continuously decreasing to zero as p approached p,; it means
that &, — co with p — p, has been observed according to eqn (6).
To evaluate g, we have fitted the data Ing vs L to the straight line
equation. By this approach we have found p, = 0.585+0.0005,
g. = 0.00161+0.00025 for E/U = 4. Next using this value of p,
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Figure 2. Dimensionless conductance g of 3-D quantum site-percolation
model vs metal concentration p for the electron Fermi energy E/U = 4.
The g values have been estimated as geometric average e"®, over 10,000
500 configurations for L 3-9 in the wide range of p, and over 10,000~
2000 configurations for L 3-11, for p near p,, respectively. Data in the
vicinity of p, have been omitted in this picture for clarity.
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Figure 3. Mobility-edge trajectory in the conductance-energy plane for
the quantum site-percolation problem on simple cubic lattice with the
site energies distributed according to eqn (2). The points are results of
numerical calculations described in the text and the line has been drawn
to guide the eye.

the data In ¢, vs In|p—p,| have been fitted to the straight line
equation and from its slope critical exponent v = 1.1640.08 has
been found.

Using the above described method, critical concentration p,
and critical conductance g, vs Fermi energy E/U have been cal-
culated. The mobility-edge trajectory in the concentration vs
energy plane has been published in our recent paper® and found
to be in good agreement with the results of Soukoulis ef a/®. In
Fig. 3 we have shown the critical conductance vs Fermi energy
obtained from the calculation. As can be seen it decreases from
g.= 1 down to g. =~ 0.002 when E/U increases from 0.01 up to
5.5. These three orders of magnitude decrease of g, vs E/U is in
contrast to the universality of the critical conductance predicted
by one-parameter scaling theory of Abrahams er al.' This uni-

versality has been accepted and used in the studies of mesoscopic
systems and nanoelectronic devices. In particular the value of
G = é*/h is often considered as an indication of the bound to
which conductance of the nanoelectronic device can be decreased
before it reaches the localized states phase behavior. Our data
indicate that the critical conductance is not universal and remain
in agreement with the result of the studies by Kaveh and Mott.2
They have reported the range 0.02-10 for g, in the same unit of
€*/h and have also concluded its non-universality. We think that
the variation of critical conductance found in this paper may
reflect the experimental observations of g, over three orders of
magnitude observed for different materials with different Fermi
energies.

Acknowledgements

We are grateful to S. Datta and N. Giordano for fruitful dis-
cussions concerning Landauer—Biittiker formalism. This work
was supported by the National Scientific Committee of Poland
(KBN), Grant No. 8T11B03809. Calculations have been per-
formed in the Computer Center of Rzesz6w University of Tech-
nology using SPARC1000.

References

1. Abrahams, E., Anderson, P. W., Licciardello, D. C. and Ramak-
rishnan, T. V., Phys. Rev. Letters, 1979, 42, 673.

2. Kaveh, M. and Mott, N. F., Philosophical Magazine B, 1987, 55, 9.

3. Shapiro, B., in Percolation Structures and Processes, Vol. 5, ed. G.
Deutscher, R. Zallen and J. Adler. Annals of the Israel Physical
Society, 1983, p. 367.

4. Lambrianides, P. and Shore, H. B., Phys. Rev. B, 1994, 50, 7268.

S. Lee, P. A. and Ramakrishnan, T. V., Reviews of Modern Physics, 1985,
57, 287.

6. Kusy, A., Stadler, A. W., Haldas, G. and Sikora, R., Physica A, 1997,
241, 403.

7. Imry, Y., in Directions in Condensed Matter Physics, ed. G. Grinstein
and G. Mazenko. 1986 World Scientific, Singapore, p. 101.

8. Soukoulis, C. M., Li, Q. and Grest, G. S., Phys. Rev. B, 1992, 45,
7724,

217



