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Abstract

Two transition concentrations of the conducting component in RuO,-glass films are defined. The first is identified with
the classical percolation threshold v, and its value has been found as lying usually in the range 0.02-0.04. At the second,
denoted vy, the temperature coefficient of resistance, measured at room temperature, changes its sign and it is found that
v, 1s most often between 0.12 and 0.16. The relatively small value of v, is interpreted within the framework of a percolation
model including segregation. A segregation coefficient is defined as particle size ratio y = D/d of the glass and RuO,
particle mean diameters D and d, respectively, with y ranging from 10 to 150. Our computer simulation results
vy = 1)=0.16 and v.(y = o) =0.02 agree with the literature data for uncorrelated site-percolation and random-void
models, respectively. The transition observed at v, is interpreted as quantum percolation threshold, separating a system
with localized states for v < v, from a system with extended states for v > v,. This is illustrated by results of numerical
studies of the dimensionless conductance g in a quantum percolation model; the calculations are made using
Landauer—Biittiker formula and a Green’s function method. Studies of conductance versus temperature characteristics
from 4.2 to 300 K show G = a + bT? low-temperature behaviour with y=0.33 for compositions below and above v, but
close to it. An interpretation of this behaviour is given within a localization/delocalization picture assuming that inelastic
scattering processes play a dominant role in the transport properties. Other approaches like those based on elec-
tron—electron interaction effects and hopping conduction are also discussed.

Keywords: RuQO;-glass films; Metal-insulator nano composites; Percolation model; Segregation coefficient; One-
electron localization; Metal-insulator transition; Landauer—Biittiker formula

1. Introduction structure has been observed as consisting of chains

of 100 A size RuO, particles surrounding larger,

The disordered systems considered in this paper
are random, macroscopically homogenous struc-
tures consisting of two components: an insulating
one and a metallic one. They are produced by firing
RuO,-based pastes deposited by screen printing on
alumina substrates [ 1, 2]. The thickness of the fired
films usually ranges from 12 to 18 um. The final film
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1 pm size regions of insulating lead borosilicate
glass. The room temperature D.C. conductivity, o,
and temperature coefficient of resistance (TCR) of
RuO, single crystals are ¢=29x10*Q *cm™!
and 5800 ppm/K; the TCR has been observed as
always positive down to 42K [3]. Thus, the
RuO,-glass films represent specific metal-insulator
nanocomposites. They have been widely used as
resistive components of thick-film microelectronic
circuits.
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The electrical transport properties of the RuO,-
glass films have already been studied for 20 years
[1,2,4-10]. A number of different models for elec-
trical conduction has been proposed; nevertheless,
the problem still needs further investigation. The
concept which is often suggested is that electrical
transport occurs via adjacent conducting particles
which form chains or clusters spanning the entire
film body. The associated models differ by their
particulate mechanism of charge transport between
adjacent grains. It is often assumed that the elec-
tron hopping or thermally activated tunneling be-
tween conducting particles is mainly responsible
for the conduction mechanism [1, 2, 4-10]. This
type of electrical transport may qualitatively ex-
plain the negative TCR which experimentally is
often noticed over a broad range of temperatures
and the film compositions.

Hopping has also been successfully used to ex-
plain the electrical transport properties below
a percolation transition of other metal-insulator
nanocomposites known in the literature as granu-
lar metal films [11, 12]. In the case of the granular
metal films the percolation transition is well
identified by the classical percolation threshold v,
extracted from the fitting of resistance R versus
composition data to the power-law R ~ (v — v}~ *
where v is the metal volume fraction of conducting
component and ¢ the conductivity exponent [11].
The values of v, obtained in this way for typical
three-dimensional (3D) granular metal films fall
often in the range 0.45-0.60. These values of v, are
in relatively good agreement with the point on
v axis where TCR changes its sign from negative to
positive. In the range v < v, resistance versus tem-
perature data for granular metal films are well
described by hopping conduction models which
predict In R ~ (T,/T)* behaviour with x =3 for
medium temperature range and with x = and
x = 1 for lower and higher temperatures, respec-
tively [12].

In this paper we show how the classical percola-
tion transition works for RuO,-glass films. In addi-
tion to an analysis of the experimental R versus
v data, we also present numerical simulation results
obtained for a percolation model with segregation.
Next, resistance versus temperature data for RuO,-
glass films are considered and shown to indicate

different behaviour from what is known for granu-
lar metal films. The difference is mainly in the fact
that the transition from negative to positive room
temperature TCR occurs at RuQ, concentration
tq Which is much larger than the estimated value of
v.. The change of resistance with temperature at
v < v, also is usually smaller than the one given by
the relation In R ~ (T {/T)*, typical for hopping
conduction. An interpretation of the observed be-
haviour based on the concepts of one-electron loc-
alization are given. Other approaches, like those
including electron—electron interaction, hopping
and intercluster tunneling are also considered and
discussed.

2. Real experiment observations

2.1. Critical volume fraction for classical
percolation

The behaviour of resistivity p versus composition
of RuO,-glass films has already been reported in
Refs. [1, 2, 4-10]. In this section we would like to
systematize these results, to show new sets of ex-
perimental data and to present their discussion in
terms of a theory of classical percolation as well.
R versus v data of RuO,-glass films have been
presented by Vest [1]. In his films RuO, particle
size d was of the order of 100 A and the glass
particle size D was in the range 1-5 pm. The par-
ticle size ratio, defined as y = D/d, was 100-500 in
that case. These data fit very well a percolation
power-law R ~ (v —v,)”" with v,=0.02 and t>~
2.85. The results of extensive studies of R versus v of
RuQ,-glass films containing RuQ, particles of dif-
ferent size have been published by Carcia et al. [4].
From the fitting of R versus v data to the percola-
tion equation they found v, values ranging from
0.02 to 0,10 for RuO, particle size ranging from 100
to 1700 A, respectively. The conductivity exponent
t was found between 2.65 and 2.99 with no depend-
ence on the size of RuO, particles. Our earlier
studies indicate similar percolation behaviour of
RuO,-glass films. Namely, we studied films with
mean size d of RuO, particles equal to 120 A and
mean size D of glass particles equal to 1.6 pm (par-
ticle size ratio y=~130). For these films, v. and
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t values extracted from a fit of R versus v data to the
percolation power-law were 0.024 and 2.49, respec-
tively [5]. Our recent studies of resistance versus
composition of films with the mean particle sizes
d>~400 A and D=>~0.55pum, giving y=14.0, were
carried out in a broad range of RuO, concentration
up to v = 0.32[9, 10]. The purpose of these studies
was to test the correctness of the fit of the resistance
versus composition data to the R ~(v —v,) ™" law.
The group of data in the range v <0.08 were fitted
to the power-law with v,~0.015 and t=2.0. The
data lying in the range v > 0.08 exhibited faster
decrease of R with increasing v.

In Fig. 1 we show the new set of resistance versus
composition data obtained in our laboratory for
RuQ,-glass films characterized by d = 100 A as esti-
mated from X-ray line broadening and BET surface
area measurements and D=~0.55 pum as found from
BET surface area measurements (segregation coef-
ficient y = 55) [13]. As one can see the data fit the
percolation power-law relatively well with values
v.~0.037 and t=4.01. We think that the large
value of the conductivity exponent can be ex-
plained within the framework of a percolation
model with a specific distribution of elementary
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Fig. 1. Resistance versus composition of RuQ;-glass films. Tri-
angles represent experimental results for the films with the
segregation coefficient y =55 (RuQ, particle size =100 A and
glass particle size D =0.55 um) and the straight line shows equa-
tion R = Ry(v — v.) " with the optimal values of the parameters
R, = 0.963Q, v, = 0.0373, t = 4.01. The data points are for the
following compositions: » = 0.10, 0.15, 0.18, 0.24, 0.28, 0.40.

resistances, namely one with a three-point resist-
ance distribution [14]. However, the physical justi-
fication of such distribution given in this paper is
slightly different from the one presented in our
previous publications [14] (see Section 3.2).

From the review of experimental results pres-
ented above we conclude that the resistance versus
composition data for RuO,-glass films can be de-
scribed within the framework of a percolation
power-law R ~(v—uv.) * with relatively small
values of v, which usually range from 0.02 to 0.04.
Thus the experimental results seem to indicate that
in RuO,-glass films a continuous network of metal-
lic type particles starts from the very small value of
v, in the range given above. In Section 3.1 we will
show how the fact that the observed v, values are
much smaller than v, =0.16, considered as univer-
sal one for 3D uncorrelated site-percolation sys-
tems [15], can be explained on the basis of the
specific nanostructure of RuQO,-glass films.

2.2. Resistance versus temperature

The resistance versus temperature behaviour of
RuO,-glass films has also attracted much interest
[1,2,7-10]. Here we would like to consider, in
particular, how this behaviour varies with RuO,
volume fraction v and compare the identified char-
acteristic v values with the value of the percolation
threshold for classical percolation. In Fig. 2 we
show R versus T relations obtained for seven films
with compositions v = 0.10, 0.15, 0.18, 0.24, 0.28,
0.40 and 0.60. Measurements were performed in
a helium flow cryostat (Kriopan) over the range
42-300K [13]. The RuO, concentrations are se-
lected in such a way that transition from negative
TCR (v = 0.1 in Fig. 2) to positive TCR (v = 0.60)
can be seen. It should be noticed that similar behav-
iour, but based on smaller range of RuO, volume
fraction, has also been observed in our earlier stud-
ies [7,9, 10]. Here we would like to point out that
the transition from negative to positive TCR occurs
well above the threshold v, for classical percolation.

To formulate the above in a more detailed way
let us consider the results in Fig. 2 more closely.
The characteristic for v = 0.60 displays a positive
TCR of the order of 600 ppm/K over the whole
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Fig. 2. Resistance versus temperature of RuO,-glass films for
the series shown in Fig. 1. For the smallest RuQ, concentration
v = 0.1 resistance shows monotonic decrease in the whole tem-
perature range. Starting from v = 0.15 the positive TCR appears
first at higher temperatures T > 160 K. As v increases the
T range for which TCR > 0 broadens and temperature of min-
imum, T, shifts towards lower temperatures. R versus T for
v = 0.6, not included in Fig. 1, is also presented as the case for
which TCR > 0 in the whole studied temperature range.

considered temperature range 4.2-300 K. That
value 600 ppm/K is one order of magnitude smaller
than the room temperature TCR of ruthenium di-
oxide single crystals [3]. This can be accounted for
the fact that the size of RuQ, particles and constric-
tions between two adjacent particles are of the
order of 10-100 A [1, 7, 8], i.e. that they are in the
mesoscopic regime. Under these circumstances the
electronic mean-free path may well exceed the con-
striction radius and transport through such a con-
striction becomes ballistic, and thus characterized
by a Knudsen resistance, rather than diffusive and

characterized by a Maxwell resistance [16].! This
effect of reducing the TCR of a network of RuO,
particles may be used to explain the R versus T re-
lation for ¢ = 0.60 in Fig. 2 within the framework of
metal-like behaviour.

As the RuO, volume fraction v decreases, a min-
imum in the resistance versus temperature charac-
teristics starts to appear for some temperature T,
It is easily seen that T,, increases as v decreases
starting from T,=20K at v =040 up to T,=
160 K at v = 0.15. For ¢ = 0.10 no minimum is seen
up to T=320 K.

Now the question arises how to define quantita-
tively the observed transition between non-metal
behaviour (negative TCR for the whole R versus
T dependence) and metal-like behaviour (positive
TCR in the R versus T dependence). Or more
precisely: what is the concentration characterizing
the transition? One way to answer this question is
to give a range of concentration where the transi-
tion occures, i.e., to define a transition region. In the
case of our data the range of RuO, concentration
in which TCR changes its sign is 0.1-0.15. Very
similar ranges of RuO, concentration: 0.12—-0.16
[7] and 0.12-0.17 [9, 10] have also been observed
for other values of segregation coefficient =130
(D=1.6 pm, d=120A) and y=14 (D=0.55pum,
d =400 A), respectively. Instead of specifying the
range of concentrations over which the transition is
expected to occur one can try to define a transition
point v = v, at which, the positive TCR first ap-
pears on R versus T characteristics as approached
from lower v values; as can be seen from Fig. 2 for
v = 0.15 the temperatures for which positive TCR
starts being visible are close to room temperature.
This fact was behind the idea of specifying critical
disorder as the one at which the room temperature
TCR (RT TCR) changes its sign. Mooij [18]
specified a critical resistivity as this, at which RT
TCR traverses zero as plotted versus resistivity.
Following this concept, in many studies of electrical

! As an example one can give here the recent results for point
contacts made of silver with constriction diameter equal to 80 A
for which the residual resistance ratio, RRR = R0 x/R4 2k, has
been found equal to 1.1, in marked contrast to RRR = 5.6 for
a broad silver strip [17].
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transport properties of disordered systems, a RT
TCR sign change has been used as an indicator of
an incipient metal-insulator transition [19, 20].

In our studies of resistance versus temperature of
RuO,-glass films with different RuO, concentra-
tion (Fig. 2) we have considered it convenient to
define a critical value v = v, for which the RT TCR
changes its sign in addition to specification of
the transition region. However, since it is, as we
suppose, a process of interplay between metallic
Boltzmann transport and quantum localization
(and/or electron—electron interaction) transport the
transition is observed not as sharp but it is smeared
around the v, value. We will address this problem
in a more detailed way in Sections 3.2-3.4. Using
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Fig. 3. Temperature coefficient of resistance estimated at
T =293 K (RT TCR) versus composition for three series of
RuQ,-glass films. Squares (¥ =55) represent the data estimated
using the seven dependences shown in Fig. 2. Triangles (y = 130)
and circles (y = 14) are the RT TCR data evaluated on the basis
of R versus T characteristics from our earlier studies [7] and
[9.10], respectively. The straight lines between the adjacent data
points are added to guide the eyes. They also allow to estimate
vq values which are: 0.12, 0.135 and 0.16 for =55, 130 and 14,
respectively.

the data shown in Fig. 2 we have calculated TCR at
293 K for each of the seven characteristics and the
obtained RT TCR values are presented in Fig. 3. In
addition, in Fig. 3 there are also shown the RT
TCR versus v data calculated in the same way from
our earlier R versus T characteristics found for
films with segregation coefficients =130 [7] and
¥ =149, 10]. As can be seen, with decreasing v (in-
creasing disorder) RT TCR monotonically de-
creases for all three relations shown in Fig. 3. The
values of v = v, corresponding to the change of RT
TCR sign are: 0.12 for the present data with y 55,
0.135 for films with y =130, and 0.16 for films with
x=14. Thus, it is seen that the estimated v, values
all fall into the relatively narrow range 0.12-0.16
and no correlation between v, and segregation co-
efficient can be noticed here. It is also worthwhile to
point out that the observed v, values are evidently
larger than the values 0.02-0.04 of the threshold
v, for classical percolation. This is illustrated in
Fig. 4.

To summarize the observations made on the
basis of resistance versus composition and resist-
ance versus temperature characteristics we see that
for RuO,-glass films the critical point v, for classi-
cal percolation as extracted from the fitting of
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Fig. 4. Schematic presentation of two transition points in
RuO,-glass films: (i) at v = v, continuous metallic network of
RuQ, particles starts to span the volume of the film; (ii) at v = v,
with v, > v., transition from negative RT TCR for ¢ <, to
positive RT TCR for ¢ > v, takes place. The estimated value of
critical RT resistivity corresponding to v is p(r,) = 1.15 Qcm for
RuQ,-glass films from Figs. 1 and 2.



A. Kusy [ Physica B 240 (1997) 226-241 231

resistance to the percolation power-law and the
critical point vy at which the RT TCR changes its
sign do not coincide. This is in contrast to gran-
ular metal films where almost coincidence of the
corresponding v, and v, values was observed [11].

3. Model

3.1. Classical percolation threshold versus
segregation

In this section we propose an explanation of the
small values of the critical volume fraction v, pres-
ented in Section 2.1. To do this let us consider
a model of the structure of RuO,-glass nanocom-
posite (see Fig. 5). The white regions in this model
correspond to insulating glass volumes in the film
and they have been generated according to an over-
lapping spheres model. It is assumed that the dia-
meter D of the insulating spheres corresponds to

Fig. 5. Model of RuQ,-glass nanostructure. Large white spaces
generated according to the overlapping spheres model corres-
pond to glass insulating regions. These regions are forbidden for
small black spheres representing RuQO, metallic grains. The
particle size ratio (segregation coefficient) is defined as y = D/d
where D is mean diameter of white insulating spheres while
d =100 A is the diameter of black RuO,.

the size of glass particles used in the film produc-
tion. The volumes between the insulating regions
are filled with small black spheres all of the same
diameter d. These black spheres represent conduct-
ing RuO, particles. It seems that the model of
overlapping insulating spheres is physically more
plausible in description of the film nanostructure,
rather than the one of hard spheres, because it
better maps the irregular shape of glass regions
developed as a result of glass melting and sintering
taking place during film firing process. Thus, our
model is described by two quantities: the ratio of
diameters y = D/d and the volume fraction v of
RuQ,. We studied this type of model by Monte
Carlo computer simulation technique using y and
v as input parameters [6]. The purpose was to
estimate the relation between v, and y. Here we
would like to present our more systematic and
more accurate numerical estimation of v, versus
y relation which we strictly confine to RuQ,-glass
films. To do this let us consider the finite size
scaling equation [21] in the following form:

ven(y) = vo(y) + const. L™, (1)

where v, is average volume fraction of RuQ, at
which, a percolating RuQO, cluster starts to connect
the opposite walls of the model of linear size L.
vz} can be found by fitting v (y) versus
L~ data to straight line equations and extrapola-
ting to (1/L)""Y = 0. For illustration purposes, the
selected relations for y = 1, y = 4 and y = 10 have
been shown in Fig. 6. v = 0.89 has been assumed
[22]. For y =1 we got v (1) = 0.165 + 0.003; this
value agrees well with p,=0.312 [21] giving v, =
pr/6=0.163. For y =4, v(4)=0.062 and for y =
10, v(10)=0.037. In Fig. 7 we have collected v (y)
data obtained for 8 values of y from y =2 up to
7 = 12 as a function of 1/y. When extrapolating to
1/x =0 they gave vy = o) =0.0197 + 0.0022.
This value agrees well with the value v, =
0.017 + 0.002 which can be deduced from the data
obtained by Elam et al. [22] for a random void
model.

On the basis of Fig. 7 one finds by extrapolation
that v, decreases from 0.035 down to 0.02 when the
segregation coefficient increases from 10 to 150. It
remains in good agreement with the v, data ob-
tained for RuQ,-glass films (see Section 2.1). Thus
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Fig. 6. Critical volume fraction versus linear size of the percolation model given in Fig. 5 for three values of segregation coefficient .
The data points have been obtained from the computer simulations. The lines have been found from fitting the data to the straight
line equations resulting in the following formulas: vy = 0.261x +0.165 for y =1, v, = 0.866x + 0.0620 for y =4 and
v = 1.702x + 0.0368 for y = 10. v = 0.89 [22] has been assumed on the horizontal axis.

the small values of critical volume fraction typical
for RuO,-glass films can be interpreted within the
framework of the model with overlapping insula-
ting spheres of mean diameter much greater than
the diameter of conducting ones.

3.2. Quantum percolation

With the value of the classical percolation thresh-
old v, estimated as lying most often in the range
0.02-0.04, the question still remains why does the
positive TCR start to appear (first at room temper-
ature region) at v = v, and not at v = v.? In this
section we propose a discussion of this problem
within the framework of a transition from a local-
ized states phase to an extended states phase.

Let us first note that if an infinite metallic net-
work composed of RuQ, particles exists then it is
a special network made of mesoscopic metallic

units. A single mesoscopic unit can be imagined as
RuO; particle with two constrictions attached to it
and connecting the particle with the remaining part
of the network. This type of nanostructure is ana-
logous to the “controlled-barrier quantum dot”
device introduced by Kastner [23]. We can define
characteristic size L, of the elementary unit and
estimate it as lying in the range 0.1d <L, <d where
d is the diameter of RuQ, particle and 0.1d stands
for the diameter of the constriction between two
adjacent particles [1, 7, 8]. Since d is of the order of
100 A we obtain a characteristic size I0A<L, <
100 A. This is a mesoscopic size and not a macro-
scopic one.

Bearing this in mind one has to compare L, with
the length L, over which a charge carrier preserves
its quantum-mechanical phase. This length is
usually identified with the inelastic diffusion length
L;,. In the case of localized system, L, is of the
order of the hopping length [24]. In either case, it is
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Fig. 7. The values of critical volume fraction v, versus inversion of segregation coefficient y. Each data point has been obtained from
extrapolation to x = 0 of the v, versus x = L'"" straight lines (as shown in Fig. 6). The points obtained in this way are given for the
following values of the segregation coefficient y: 2, 3,4, 5, 6, 8, 10, 12. The v, versus 1/y data have been fitted to the straight line equation
resulting in v, = 0.159(1/%) + 0.0197. Thus, for y = oo we got v, = 0.0197 + 0.0022.

a temperature-dependent length. It is typically
found that L, is of the order of 10°-10* A at liquid
He temperature and L, =10-100 A at room tem-
perature [25]. Thus it is seen that in the temper-
ature range considered here the following condition
is fulfilled:

L/ < L(b ’ (2)

where equality can be expected close to room tem-
perature.

On the basis of Eq. (2) we conclude that our
RuO,-glass nanocomposite is not course enough to
neglect electron wave interference effects in the dis-
cussion of R versus T dependences as shown in
Fig. 2. Namely, we expect that the RuO,-glass sys-
tem even though above the classical percolation
threshold v, is geometrically connected, it will be
still localized in quantum-mechanical sense. It is so
because the network is a strongly disordered metal-
lic system and this is disorder on the mesoscopic
scale. When v increases above v, and approaches

v, we believe we are approaching the localiza-
tion—delocalization point. Therefore extended
states phase may only be observed above v,.

The obvious question which can be formulated is
why the transition close to v, is not observed as
a sudden change in the finite temperature conduc-
tivity when crossing v, as expected for a metal-in-
sulator transition (MIT), e.g. as for the case of
a classical percolation transition? The conductivity
of a disordered system close to the MIT can be
described by the scaling expression [19, 24, 26]

Ae? Be?
g N"E'I“hLT(T), (3)

where e is elementary charge, # is Planck’s con-
stant, A, B are numerical constants both of the
order of unity and ¢ is correlation length which
diverges as the localization edge is approached
from both localized and extended states sides,
& =&ylv — vyl %, with the same exponent v,. ¢ — 0
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Is not observed as v — vy at a finite temperature
since L(T) does not diverge at the transition.
Quantum mechanical interference in the pres-
ence_of disorder in a percolating 2D system of
100 A size metallic particles has been considered by
Sheng and Zhang [27]. To utilize Sheng and
Zhang’s idea for the analysis of electrical transport
in RuO,-glass films we have extended their model
to the 3D case [28]. We will briefly describe this
model since it is important in the discussion of the
R versus T characteristics observed for different
RuO, concentrations. The model is based on
a simple cubic lattice. A fraction p of the lattice sites
is occupied by metallic particles. We consider only
percolating samples above p.~0.312 (or v, =
(m/6)p. =~0.16); segregation has not been introduced
to the model at this stage. The linear size of the
sample is measured in units of the lattice spacing
d which is the diameter of the metallic particles.
Perfect metallic electrodes are attached to opposite
walls of the sample. For the model of size L we
define a one-electron tight-binding Hamiltonian

H=3 ¢,n>{n|+ U Y, im){nl, (4)
” [n.m]
where the position » is given by (n,, n,, n.) for
n.=12,...,L+2andn,n.=12,...,L+ L Uis
the nearest neighbour hopping element taken to be
— 1, [n, m] denotes nearest neighbour site indices.
The distribution of site energies ¢, is given by
P(s,) = pdle,) + (1 — p)dle, — o0). To calculate the
dimensionless conductance of the sample we use
the multichannel Landauer—Biittiker formula [29]

G AR Ty e
T ek Y L+ R — T Y

g (5
The number Ly of channels in the electrodes is
equal to the number of solutions for k. of the
dispersion relation

E =2U(cos k.d + cos k,d + cos k, d), (6)

where discrete transverse wave vector values are
k,=np/(L + 2) and k, = ny/(L + 2) with §, 7 tak-
ing values 1,2,...,.L + 1. T; and R; have been
calculated by summation of transmission and re-
flection matrices {tl-j|2 and |r;|* over all allowed
pairs of (k,, k.), i.e. over number L, of allowed

quantum channels, with |¢;;]* = ve;| G (L + 2, 1)),
lr1? = li(v;v)" 2 G (1,1) — 6;;|% The channel velo-
city at k(i) is v; = ¢E;/dk.(i). Gjj(n,n') is the
retarded Green’s function with x coordinates n and
n’ and channel indices i and j. To calculate the
Green’s function G(n, m, E) we solve the Dyson
equation following partly the approach described
by McLennan et al. [30].

We have performed extensive numerical studies
of the dimensionless conductance g of the quantum
percolation model for different values of linear size
L, occupied sites concentration p, and Fermi energy
E/U [28]. The main conclusion from these studies
that is important here is that there are two
transition points in a 3D quantum percolation sys-
tem: a classical percolation threshold p. and
a quantum percolation threshold p, > p.. This can
casily be seen from Fig. 8, where the dimensionless

Fig. 8. Dimensionless conductance ¢ (estimated numerically by
using Eq. (5)) versus concentration p of sites occupied by metallic
particles for different values of linear size L and Fermi energy
E/U =2 of the quantum percolation model. The value of
p = pq=0.44 divides the whole p region into two subregions: (i)
p < pq in which conductance exponentially decreases with L,
known as localized states region and (ii) p > p, in which conduc-
tance tends to increase linearly with L, known as extended states
region (see text).
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conductance calculated using Eq. (5) has been plot-
ted versus concentration p of occupied sites for
electron Fermi energy E/U = 2. Data are shown
starting from p = 0.34. The point p = p, =0.44 cor-
responds to the Anderson transition: for p < p,,
g decreases exponentially with L while for p > p, it
increases linearly with L. We found that p, depends
on energy E/U: it sharply increases approaching
unity as the electron energy approaches the band
center (E/U = 0), while it increases roughly linearly
to unity as the band edge (E/U = 6) is approached.
In the broad intermediate region starting from
E/U = 0.01 up to E/U = 3.5 the quantum percola-
tion threshold is almost independent of energy and
takes values in the range between 0.4 and 0.5. These
data can be compared with the ones of Soukoulis
et al. [31] who used a slightly different model. They
studied (by finite-size scaling and transfer matrix
methods) mobility-edge trajectory for site-percola-
tion problem with site energy distribution P(g,) =
po(e, —&a) +(1 —p)d(e, —eg) With g5 = —¢g,, i.e., dif-
ferent from our binary distribution P(s,) =pd(s,) +
(1—p)é(e, — ), and found p, = 0.44 + 0.01, for
E/U near the center of the subband, as the lowest
value of quantum site-percolation threshold.

To sum up, our studies of a quantum percolation
model of 3D metal-insulator nanocomposites have
shown that in the concentration range p. < p < p,
the system is localized, i.e. its average conductance
¢ decays exponentially with L. For p > p, the
sample conductance is a self-averaging quantity
and tends to increase linearly with the linear size
L of the system, indicating extended states phase
behaviour. Thus it is seen that a percolation system
that is not coarse enough, i.e. one that fulfills
Eq. (2), is characterized by two critical points on the
concentration p axis. One, at p. (or v, = (n/6)p,.),
where a transition from classical insulator to quan-
tum insulator takes place and the second one, at
pq Where a transition from quantum insulator to
metal occurs. We would like to stress this con-
clusion here since it seems that it has not been given
proper attention to it in the up-to-date literature of
electrical transport properties in metal-insulator
nanocomposites.

Let us now explain the new meaning of the
three-component percolation network mentioned
in Section 2.1. The random resistance network with

a three point resistance distribution has been de-
rived from site-bond percolation model in which
the sites of the lattice are occupied {unoccupied) by
conducting particles with probability p(1 — p) [14].
Bonds between two adjacent sites can take three
different values: (i) r = oo if at least one of the two
sites is unoccupied, (i) r = r,, and (iii) r = r; if both
two adjacent sites are occupied; r,, and r; are taken
with probability b and (1 —b). We think that
' and r; originate randomly when some part of the
system is in the extended state and the other part is
in the localized state. In this situation a bond can
randomly belong to the part of the system which is
in the extended state and then be occupied by r,,, or
it can belong to the localized part of the system and
then be occupied by r;. This type of distribution
leads to bicritical behaviour which is typical feature
of quantum percolation systems showing a classical
percolation threshold (p.) and a quantum percola-
tion threshold (p,) as displayed in Fig. 8.

3.3. R versus T within the framework
of one-electron localization

Up to now we have described a 3D quantum
percolation model at T = 0 K. The question which
arises now is how the two transition points will
manifest themselves in the behaviour of R versus
T taken at different RuO, concentrations. One
approach to this problem utilizes the concept pres-
ented by MacKinnon and Kramer [32]. The key
idea of their calculation of conductivity versus
temperature is that at finite temperature inelastic
scattering processes play a dominant role in deter-
mining the transport properties. Our metal-insula-
tor nanocomposite is thought to be subdivided into
cubes of linear size L, defined as diffusion length
between two successive inelastic scattering events.
The diffusion length is related to the phase-coher-
ence time via

pr, = L2, )

where D is the diffusion constant. Including the
Einstein relation ¢ = e?n(E)D where n(E) is the
density of states at the Fermi energy and consider-
ing the scaling function [33] f(g) = dIng/dIn L for
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L = L;, one finds [32]

dng _ flg)~(@d—2)
dint,  d-—Blg)
where d is the dimensionality of the system. The

inelastic scattering time is a function of temperature
according to

(®)

7, = const. T 7%, 9)

where s is in the range ¥ < s < 3, depending on the
relaxation mechanism [34].

For large disorder, such that f(g) <O (ie. for
p<pg)and |B(g)l > 1, dIno/dInt, = — 1. By in-
tegrating with respect to 7, MacKinnon and
Kramer found [32]

o =0o(T/Ty)* for p<p, (10)

independently of dimensionality. ¢, and T, are
integration constants.
Near the Anderson transition f(g)=0, Eq. (8)

givesd In g/d In 1, = —4, for d = 3, so that by inte-
gration
0 =0o(T/To)® for p=p, (11)

In the regime of weak localization we have
[32,35]

Blg) =(d —2) —(a/g) for p>p,, (12)

where a is a constant of the order of 1/n* [32].
Taking into account Egs. (8), (9) and (12) ford = 3
one obtains the known relation [32, 35]

eZ T s/3
+ m[:ﬂil for p> Dqo> (13)

o(T) = a(0)
where [ is a length of the order of elastic mean free
path.

Additional physical insight can be gained from
the papers of Imry [19]. He considered the con-
ductivity of a disordered metal utilizing the scaling
picture of Abrahams et al. [33]. In this picture in
the transition region a characteristic length, ¢, is
defined which diverges with the same exponent
v, as the localization edge is approached from both
the localized and extended state sides, ¢ =
(g — go)/gd . For L <&, g(L)=g. and depends

only weakly on L, while for L » ¢ it is either much
larger (metal) or much smaller (insulator) than g..
Below g, this characteristic length is equal to the
localization length. Above g. (or above p,) the
physical interpretation of £ is, however, not so clear
and we state here only that for L > £ ohmic behav-
iour g(L) ~ LY~ % begins to be observed. Using
finite size scaling arguments it can be shown that
the macroscopic conductivity at T = 0 K is given
by this correlation length &, as a~(e?/h)¢é? 9. At
finite temperatures, however, the phase coherence
length, L, has to be considered and Eq. (3) applies.
When L, < ¢, L, is the relevant length which deter-
mines the conductivity and

2

az%@* for L,<¢ (14)
which may be valid close to the Anderson
transition, i.e. close to py, or for sufficiently high
temperatures. Using the Einstein relation ¢ =
e’n(E)D and the idea of a macroscopic diffusivity
D analogous to a macroscopic conductivity, it can
be shown with the help of Eq. (7) that L, ~ tj"
[19]. Using this result one obtains from Eq. (14)
o(T)~ T2 and for d=3 o(T)~T*? in
agreement with Eq. (11). Similar arguments sup-
porting Eq. (11) have been given by Shapiro [36].
He defined L, as the length scale at which the level
broadening #/t, becomes comparable to the inter-
level spacing 1/(nL}) so that L, = (t,/hn)"’* which
also leads to Eq. (11). It has to be pointed out that
above discussion and Eq. (11) holds when L, < &
which may be fulfilled close enough to p, even for
low temperatures. Since L, increases as temper-
ature goes down then there is a crossover temper-
ature T, such that L,(T.) = ¢ from which T, =
[const./(E*nh)]'* where const. is from Eq. (9). Now
the condition Ly < ¢ which must be fulfilled in
order to observe o(T) ~ T *“ behaviour turns out
to be T > T, in the temperature scale. This con-
clusion is valid in the metallic regime but since close
to pg, o cannot distinguish between localized and
extended states [19, 35] it can also be considered as
valid in the localized region.

For T < T, ie. L, > ¢, on the other hand, ¢(T')
is different for extended and localized states. Above
pg when T — 0, ¢(T') should take on a finite value
given by o=(e?/h)(1/¢) for d = 3. Below p, when
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T -0, a variable range hopping should be ex-
pected [36]

Ino(T)~ —(T/T)y (15)

for T<T,=1/(knf)®> and x=1 or i1 When
T, < T,, which can be the case sufficiently close to
Py an intermediate region lying between T and
T. takes place. This region separates between
T3 (for T » T,) and variable range hopping (for
T < T,) behaviour. In this intermediate region T is
too large for variable range hopping to take place,
so that in this case “phonon assisted” diffusion
appears like a random walk with a distance
& (=localization length) and time 7, independent of
dimension [19], i.e. D(zy) = £*/7, which together
with the Einstein equation gives ¢ = e*n&*/1,. From
this, and using Eq. (9), we find o(T) ~ T* in the
intermediate region T, < T < T, which confirms
Eq. (10) to be valid below p,.

The important conclusions which can be for-
mulated on the basis of the above discussion are the
following. (i) In the extended states regime, i.e. for
p > p, we can expect positive TCR down to some
small temperature T, below which a negative TCR
should be observed. (ii) For stronger disorder but
still above the Anderson transition, p=p, Wwe
should proceed from R versus T relations having
a minimum to weak monotonically decreasing
R(T) dependences like R~ T 3. These types of
relations can also hold below the Anderson
transition, but close to it, ie. for p<p,, and for
temperatures which are not too low since 7 » T,
(or L, < &) should be fulfilled in this case. (iii) With
decreasing temperature we can proceed from
R~ T %3 to T S behaviour for T, « T < T, and
decreasing the temperature below T, we could
finally enter the variable range hopping regime
Ino ~—(T;/T)** orlne ~—(T,/T)"

To interpret the resistance versus temperature
characteristics in terms of the above discussion we
have converted the data for » = 0.10 and 0.15 of
Fig. 2(a) to conductance and have fitted them to the
equation G = a + bT?* with g, b and y being con-
stant coefficients. After differentiating one obtains
log G’ = log(by) + (y — Dlog T. The exponent
y has been estimated from a least-squares fit to the
data in the range T < 120 K. For both v = 0.10
and 0.15 y=~0.33 has been found as the best esti-

mate (see Fig. 9). It is important to point out that
for the RuO,-glass films considered v,=0.12 (see
Fig. 3). It means that the concentration v = 0.10 is
located below v, and the concentration v = 0.15 is
located above v, Thus the value of the exponent
y detected from Fig. 9 should be compared with the
exponents s and s/3 as in Egs. (10) and (11). Accord-
ing to Ref. [34] (see Eq. (9)), they should be
% <s<3and#$ < s/3 < 1. The lower bound of the
predicted range is $20.22. Our value of the expo-
nent y = 0.33 is close to this lower bound.

3.4. Discussion of other results and approaches

In the preceeding sections we have interpreted
the experimental results for RuQ,-glass films with-
in the framework of an approach that combines
classical percolation theory and single-electron
localization. Since it is by no means the only possi-
bility, in this section we compare and discuss
possible other approaches.

GIGpin

T0A33

Fig.9. Sample conductance versus temperature raised to the
power of 0.33. The data have been obtained by conversion of the
results given in Fig. 2(a) for RuO,; concentrations v = 0.10 and
0.15. Such a power-law behaviour of conductance is expected to
hold close to the metal-insulator transition (sec text).
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In general, close to the classical percolation thresh-
old one usually considers a so-called crossover or
smearing region |Av| = (g,/c,)Y**? [37] where
o, and g, are conductivities of the metallic phase
and insulating phase, respectively, while ¢ is the
second conductivity (dielectric) exponent. The con-
ductivity ratio ¢,/0, in the case of RuO,-glass films
is of the order of 10~ 2% and with t = 2 and ¢ = 0.75
the width of the crossover region is |[Av|= 1077, ie.
much less than 0.01, the accuracy to which the
concentrations are known from film to film within
a series. We also follow Vest [1] and Pike and
Seager (see Ref. [2]) in their conclusion that spuri-
ous doping of the glass matrix by Ru atoms, if any,
is of no influence on its fundamental insulating
behaviour. Taking the above arguments into
account we see that the existence of very small
crossover region Av does not disturb significantly
determination of v, from the fitting of the resistance
data to the percolation equation R~ (v —v;) "
The agreement between the values of v, in the range
0.02-0.04 for films with y in the range 10-150 and
the v, values in the range 0.02-0.35 found numer-
ically for the percolation model with the same
range of ¥ confirms this conclusion.

As shown in the previous section, the quantum
percolation model allows for a reasonable inter-
pretation of the resistance versus temperature
behaviour of the actual films with different com-
positions. It should be mentioned here that the resis-
tivity of the film with v =0, =0.12 is p(v)=
1.15 Qcm (see caption to Fig. 4). This value may be
compared with the value of p,= 1072 Qcm as
found by Rosenbaum et al. [26] for granular Al-Ge
films. For these nanocomposites o¢,/a; =107,
i.e. 13 orders of magnitude greater than for RuO,-
glass films. Therefore, the degree of disorder is less
in the Al-Ge system than in RuO,-glass one. Fur-
thermore, the contribution to the sample conduc-
tivity coming from the insulating matrix [38] is also
larger in the granular metal films. And finally, the
bulk conductivity of Al is 12.6 times larger than
that of RuQ,. We believe that the above-mentioned
factors are responsible for the fact that p(vy) is two
orders magnitude larger than p. found for the
Al-Ge system in Ref. [26]. For a Ni,Cr, -, alloy
Mooij [18] has found p=10"*Qcm as corres-
ponding to the point at which the RT TCR changes

sign. This disordered system is, however, composed
of two metals. It seems that the tendency to de-
crease the critical value of the resistivity when pas-
sing from RuO,-glass through Al-Ge to Ni Al _,
system can be qualitatively explained within the
framework of a decrease of the ¢,/0, ratio and an
increase of metallic phase conductivity in those
systems.

It is well known that the Anderson-type metal-
insulator transition considered in the previous
section in any real system is usually accompanied
by the interaction-induced (Mott) transition.
Recently, therefore, the name Anderson-Mott
transition was introduced in the MIT literature [39].
The transition which we identify with the point on
disorder axis corresponding to v, and where the
RT TCR changes its sign is a composition-
driven one in such a sense that it is achieved by
changing the RuO, concentration solely. Even so,
however, the electron—electron interaction plays an
important role in the MIT phenomenon. This is
expected to become stronger as one approaches the
critical region and at low temperatures. Extensive
studies of the composition-driven transition in the
perovskite oxides Na,Ta,W,_,O; (near the
transition  observed at x —y=0.19) and
LaNi; _,Co,0; (in the range 0 < x < 0.75) have
been carried out by Raychaudhuri and Rajeev
[40, 417. It has been found that for samples on the
metallic side of the transition {for LaNi; _ Co,O;
observed at x = x.~0.65) and in the temperature
range 0.3 < T <4K the conductivity follows
a power-law ¢ = a + bT*, with an exponent y =}
[41]. This has been interpreted by the authors as
arising from interaction effects in the critical regime
where the correlation length ¢ » L, (see our Eq.
(3)). On the insulating side of the transition their
samples have shown either correlated hopping or
power-law behaviour with a(T = 0) = 0. At higher
temperatures (T > 10 K) Raychaudhuri and Ra-
jeev observed an almost linear conductivity de-
pendence on T which they interpreted as arising
from electron-phonon interactions. Similarly, Lin
and Wu’s [42] studies of Ti,_Al, alloys
(0 < x < 0.19) between 4 and 300 K have shown two
different temperature regimes. For 4 < T <25K
the resistivity correction Ap followed a power-law
in temperature with an exponent y =73 and
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a power-law in the residual resistivity Ap ~ p*°, in
good agreement with electron—electron interaction
theory [43,44]. From the studies cited above
[40-42] one may conclude that in a system where
interactions are important the form ¢ = a + bT /2
becomes ¢ = a + bT '/* as the MIT is approached,
and at the transition ¢ = bT ''*. The same conjec-
ture has also been formulated by Maliepaard et al.
[45] for compensated GaAs samples.

One would like to answer the question which of
the two phenomena quantum interference or elec-
tron—electron interaction mainly controls the
transition observed here at v, for RuO,-glass films.
[t has to be stressed that at present there is no
conductivity theory near the MIT that considers
strong electron—electron interaction and strong
localization on equal footing. The equation
o =a+ bT? with y =  has its origin in electron—
electron interaction theory in three dimensions
[43, 44]. Unfortunately, this theory is a perturba-
tion theory which gives only the correction to the
conductivity far from the MIT and it is not known
whether or not it is still valid close to it, where
strong interaction effects must be considered
[26,35]. It is well known that the conductivity is
determined by the shortest length scale in the sys-
tem. When we are on the metallic side of the
transition, but close to it, e.g. as in the case of our
film with ¢ = 0.15, the correlation length ¢ is large
and the shortest length is the phase-coherence
length L, (see Eq. (3)). Now, this phase-coherence
length can be equal to: (i) the electron—electron
interaction length L, or (ii) the inelastic scattering
length, L;,. Maliepaard et al. [45] have shown that
for a magnetic-field-driven MIT in compensated
GaAs the case (i) takes place. Assuming that the
electron—electron interaction length L, (T ) is equal
to the thermal diffusion length Ly = (DA/kT )'/* and
using the Einstein relation ¢ = e*n(E)D they came
up with the relation ¢ = a + bT '’?; furthermore
they have also shown that for the magnetic-field-
driven MIT in compensated GaAs this formula
works well from 1 K down to 60 mK both above
and below the transition point. Since in this case
the magnetic field was strong enough (9 T) to sup-
press the quantum interference effects this result is
a nice example of interaction-induced MIT. On the
other hand, Ovadyahu [25] has assumed that the

phase-coherence length is inelastic scattering length
(case (i1)) and using Eq. (7), Einstein equation
o = e*n(E)D, Eq. (9) and Eq. (14) (see Section 3.3)
he has shown that ¢ ~ T*° which including % <
s < 3 suggests that 3 < y < 1, a range which also
contains y = 4. Ovadyahu has found an exponent
y =3 for three-dimensional disordered In,O;_,
samples above the MIT at relatively high tempera-
tures from 20 to 300 K.

Let us now discuss shortly hopping conduc-
tion. In this case the conductivity should follow
Eq. (15) with T, = 1/(kné)*. Since ¢ diverges as
& =Eol(v — vy)/vg|”", then one obtains T ~
(v — vg)/t|", ie. Ty should go continuously to
zero at v,. In our recent studies [10] including this
type of conduction we have fitted Eq. (15) (written
for resistance) to the resistance versus temperature
data for RuO,-glass films characterized by
0, =0.155. For the values of v = 0.05 and v = 0.08,
thus lying in this case well below vy, T, =146 K,
x=0.136 and T;=3530K, x=0.074 have been
found, respectively. The observed T, values were
found as approaching zero at v=0.22. Within the
framework of our present model this value is ex-
pected to be close to v,=0.155. However, because
of the obtained very small values of the exponent
x this behaviour cannot be interpreted as variable
range hopping.

4. Conclusions

The RuO,-glass films are specific nanostructured
metal-insulator composites. They have a large par-
ticle size ratio (segregation coefficient) y = D/d,
usually in the range between 10 and 150 with d
being typically of the order of 100 A. The critical
volume fraction of RuQ,, v, estimated from the
resistance versus composition data by fitting them
to the percolation power-law R~ (v —v.) ', has
been found to be, most often, in the range 0.02-0.04.
Resistance versus temperature characteristics stud-
ied at different compositions above v, are relatively
flat and show transition from those indicating
negative TCR to the ones with positive TCR in the
temperature range from liquid helium up to room
temperature. The transition concentration v, at
which the RT TCR changes its sign has been found
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to be lying in the range 0.12-0.16. It has been
observed that slightly below and slightly above
v, the low-temperature conductance obeys the
power-law G = a + bT” with y=0.33.

The above experimental observations have been
explained here within the framework of 3D per-
colation and localization models of the RuQ,-glass
nanocomposites. It has been demonstrated numer-
ically that for the classical percolation model with
segregation coeflicient y ranging from 10 to 150 one
obtains the v, values in the range from 0.035 to 0.02,
respectively, in good agreement with the experi-
ment. A 3D quantum percolation model has also
been used to understand the resistance versus tem-
perature behaviour [28]. In fact, it is an Anderson
model, however, with a binary distribution of site
energies of the type P(e,) =pd(s,) +(1 —p)d(e, — o).
It results in two critical points: one at p. with
transition from classical insulator to quantum insu-
lator, and another one at p, > p. with a transition
from quantum insulator to metal. At this stage of
the studies, segregation has not been introduced to
the quantum percolation model. Because of that,
pq = 0.44 + 0.01 yielding v, = py(n/6)=0.23 found
from numerical simulations cannot give quantita-
tive agreement with the transition concentration
v, found for RuO,-glass films. However, the ob-
tained values of p, remain in good agreement with
the recent estimates of p, in similar quantum sys-
tems [31]. Moreover, the existence of two critical
points seems to be promising as a qualitative ex-
planation of the two transition points that have
been defined here on the basis of the experimental
data for RuQ,-glass films. The observed very weak
G = a + bT? behaviour with y=0.33 has already
been noticed for strongly disordered metallic sys-
tems approaching the Anderson transition from
both the metallic and localized state sides
[19, 25, 32]. It has also been theoretically justified
and experimentally confirmed for interaction-in-
duced metal-insulator transitions [40, 41, 457]. The
temperature dependence of conductivity of the
disordered system close to the metal-insulator
transition is determined by the shortest length in
the system. It remains an open question whether in
this case this shortest length is the inelastic scatter-
ing length or the electron—clectron interaction
length.
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